Detailed syntax breakdown of Definition df-fldext
Step | Hyp | Ref
| Expression |
1 | | cfldext 31713 |
. 2
class
/FldExt |
2 | | ve |
. . . . . . 7
setvar 𝑒 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑒 |
4 | | cfield 19992 |
. . . . . 6
class
Field |
5 | 3, 4 | wcel 2106 |
. . . . 5
wff 𝑒 ∈ Field |
6 | | vf |
. . . . . . 7
setvar 𝑓 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑓 |
8 | 7, 4 | wcel 2106 |
. . . . 5
wff 𝑓 ∈ Field |
9 | 5, 8 | wa 396 |
. . . 4
wff (𝑒 ∈ Field ∧ 𝑓 ∈ Field) |
10 | | cbs 16912 |
. . . . . . . 8
class
Base |
11 | 7, 10 | cfv 6433 |
. . . . . . 7
class
(Base‘𝑓) |
12 | | cress 16941 |
. . . . . . 7
class
↾s |
13 | 3, 11, 12 | co 7275 |
. . . . . 6
class (𝑒 ↾s
(Base‘𝑓)) |
14 | 7, 13 | wceq 1539 |
. . . . 5
wff 𝑓 = (𝑒 ↾s (Base‘𝑓)) |
15 | | csubrg 20020 |
. . . . . . 7
class
SubRing |
16 | 3, 15 | cfv 6433 |
. . . . . 6
class
(SubRing‘𝑒) |
17 | 11, 16 | wcel 2106 |
. . . . 5
wff
(Base‘𝑓)
∈ (SubRing‘𝑒) |
18 | 14, 17 | wa 396 |
. . . 4
wff (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)) |
19 | 9, 18 | wa 396 |
. . 3
wff ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒))) |
20 | 19, 2, 6 | copab 5136 |
. 2
class
{〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} |
21 | 1, 20 | wceq 1539 |
1
wff
/FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} |