| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fac | Structured version Visualization version GIF version | ||
| Description: Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 30470). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| df-fac | ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfa 14312 | . 2 class ! | |
| 2 | cc0 11155 | . . . . 5 class 0 | |
| 3 | c1 11156 | . . . . 5 class 1 | |
| 4 | 2, 3 | cop 4632 | . . . 4 class 〈0, 1〉 |
| 5 | 4 | csn 4626 | . . 3 class {〈0, 1〉} |
| 6 | cmul 11160 | . . . 4 class · | |
| 7 | cid 5577 | . . . 4 class I | |
| 8 | 6, 7, 3 | cseq 14042 | . . 3 class seq1( · , I ) |
| 9 | 5, 8 | cun 3949 | . 2 class ({〈0, 1〉} ∪ seq1( · , I )) |
| 10 | 1, 9 | wceq 1540 | 1 wff ! = ({〈0, 1〉} ∪ seq1( · , I )) |
| Colors of variables: wff setvar class |
| This definition is referenced by: facnn 14314 fac0 14315 |
| Copyright terms: Public domain | W3C validator |