Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-fac | Structured version Visualization version GIF version |
Description: Example for df-fac 13684. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11740 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 6661 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 11953 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 13688 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2781 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 13691 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 11820 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 7162 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 11954 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 11951 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2758 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 11949 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 11950 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 11762 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 11749 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 12237 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 10688 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addid2i 10866 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 12197 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 11759 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 12239 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 10688 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 12202 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2781 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2781 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 2c2 11729 4c4 11731 5c5 11732 ℕ0cn0 11934 ;cdc 12137 !cfa 13683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-seq 13419 df-fac 13684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |