![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-fac | Structured version Visualization version GIF version |
Description: Example for df-fac 14234. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12278 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 6895 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 12491 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 14238 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2761 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 14241 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 12358 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 7421 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 12492 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 12489 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2733 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 12487 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 12488 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 12300 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 12287 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 12777 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 11223 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addlidi 11402 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 12737 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 12297 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 12779 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 11223 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 12742 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2761 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2761 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 2c2 12267 4c4 12269 5c5 12270 ℕ0cn0 12472 ;cdc 12677 !cfa 14233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-seq 13967 df-fac 14234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |