| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fac0 | Structured version Visualization version GIF version | ||
| Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| fac0 | ⊢ (!‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11113 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 0 ∈ V) |
| 3 | 1ex 11115 | . . . 4 ⊢ 1 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 1 ∈ V) |
| 5 | df-fac 14183 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 6 | nnuz 12777 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 7 | dfn2 12401 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 8 | 6, 7 | eqtr3i 2758 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 9 | 8 | reseq2i 5929 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 10 | 1z 12508 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 11 | seqfn 13922 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( · , I ) Fn (ℤ≥‘1)) | |
| 12 | fnresdm 6605 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 14 | 9, 13 | eqtr3i 2758 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 15 | 14 | uneq2i 4114 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 16 | 5, 15 | eqtr4i 2759 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 17 | 2, 4, 16 | fvsnun1 7122 | . 2 ⊢ (⊤ → (!‘0) = 1) |
| 18 | 17 | mptru 1548 | 1 ⊢ (!‘0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 {csn 4575 〈cop 4581 I cid 5513 ↾ cres 5621 Fn wfn 6481 ‘cfv 6486 0cc0 11013 1c1 11014 · cmul 11018 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 ℤ≥cuz 12738 seqcseq 13910 !cfa 14182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-fac 14183 |
| This theorem is referenced by: facp1 14187 faccl 14192 facwordi 14198 faclbnd 14199 faclbnd4lem3 14204 facubnd 14209 bcn0 14219 bcval5 14227 hashf1 14366 fprodfac 15882 fallfacfac 15954 ef0lem 15987 ege2le3 15999 eft0val 16023 prmfac1 16633 pcfac 16813 tayl0 26297 logfac 26538 advlogexp 26592 facgam 27004 logexprlim 27164 subfacval2 35252 faclim 35811 bccn0 44461 mccl 45723 dvnxpaek 46065 dvnprodlem3 46071 etransclem14 46371 etransclem24 46381 etransclem25 46382 etransclem35 46392 |
| Copyright terms: Public domain | W3C validator |