MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facnn Structured version   Visualization version   GIF version

Theorem facnn 14247
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
StepHypRef Expression
1 c0ex 11175 . . . 4 0 ∈ V
21a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V)
3 1ex 11177 . . . 4 1 ∈ V
43a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V)
5 df-fac 14246 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
6 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
7 dfn2 12462 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
86, 7eqtr3i 2755 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
98reseq2i 5950 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
10 1z 12570 . . . . . . 7 1 ∈ ℤ
11 seqfn 13985 . . . . . . 7 (1 ∈ ℤ → seq1( · , I ) Fn (ℤ‘1))
12 fnresdm 6640 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
1310, 11, 12mp2b 10 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
149, 13eqtr3i 2755 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
1514uneq2i 4131 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
165, 15eqtr4i 2756 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
17 id 22 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0}))
182, 4, 16, 17fvsnun2 7160 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918, 7eleq2s 2847 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  {csn 4592  cop 4598   I cid 5535  cres 5643   Fn wfn 6509  cfv 6514  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  0cn0 12449  cz 12536  cuz 12800  seqcseq 13973  !cfa 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-fac 14246
This theorem is referenced by:  fac1  14249  facp1  14250  bcval5  14290  fprodfac  15946  logfac  26517  wilthlem3  26987
  Copyright terms: Public domain W3C validator