MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facnn Structured version   Visualization version   GIF version

Theorem facnn 14311
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
StepHypRef Expression
1 c0ex 11253 . . . 4 0 ∈ V
21a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V)
3 1ex 11255 . . . 4 1 ∈ V
43a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V)
5 df-fac 14310 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
6 nnuz 12919 . . . . . . . 8 ℕ = (ℤ‘1)
7 dfn2 12537 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
86, 7eqtr3i 2765 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
98reseq2i 5997 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
10 1z 12645 . . . . . . 7 1 ∈ ℤ
11 seqfn 14051 . . . . . . 7 (1 ∈ ℤ → seq1( · , I ) Fn (ℤ‘1))
12 fnresdm 6688 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
1310, 11, 12mp2b 10 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
149, 13eqtr3i 2765 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
1514uneq2i 4175 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
165, 15eqtr4i 2766 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
17 id 22 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0}))
182, 4, 16, 17fvsnun2 7203 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918, 7eleq2s 2857 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  {csn 4631  cop 4637   I cid 5582  cres 5691   Fn wfn 6558  cfv 6563  0cc0 11153  1c1 11154   · cmul 11158  cn 12264  0cn0 12524  cz 12611  cuz 12876  seqcseq 14039  !cfa 14309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-fac 14310
This theorem is referenced by:  fac1  14313  facp1  14314  bcval5  14354  fprodfac  16006  logfac  26658  wilthlem3  27128
  Copyright terms: Public domain W3C validator