| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facnn | Structured version Visualization version GIF version | ||
| Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facnn | ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11117 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V) |
| 3 | 1ex 11119 | . . . 4 ⊢ 1 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V) |
| 5 | df-fac 14188 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 6 | nnuz 12781 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 7 | dfn2 12405 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 8 | 6, 7 | eqtr3i 2758 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 9 | 8 | reseq2i 5932 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 10 | 1z 12512 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 11 | seqfn 13927 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( · , I ) Fn (ℤ≥‘1)) | |
| 12 | fnresdm 6608 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 14 | 9, 13 | eqtr3i 2758 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 15 | 14 | uneq2i 4114 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 16 | 5, 15 | eqtr4i 2759 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 17 | id 22 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0})) | |
| 18 | 2, 4, 16, 17 | fvsnun2 7126 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| 19 | 18, 7 | eleq2s 2851 | 1 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 {csn 4577 〈cop 4583 I cid 5515 ↾ cres 5623 Fn wfn 6484 ‘cfv 6489 0cc0 11017 1c1 11018 · cmul 11022 ℕcn 12136 ℕ0cn0 12392 ℤcz 12479 ℤ≥cuz 12742 seqcseq 13915 !cfa 14187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-fac 14188 |
| This theorem is referenced by: fac1 14191 facp1 14192 bcval5 14232 fprodfac 15887 logfac 26557 wilthlem3 27027 |
| Copyright terms: Public domain | W3C validator |