| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > facnn | Structured version Visualization version GIF version | ||
| Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facnn | ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11234 | . . . 4 ⊢ 0 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V) |
| 3 | 1ex 11236 | . . . 4 ⊢ 1 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V) |
| 5 | df-fac 14297 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 6 | nnuz 12900 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 7 | dfn2 12519 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 8 | 6, 7 | eqtr3i 2761 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 9 | 8 | reseq2i 5968 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 10 | 1z 12627 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 11 | seqfn 14036 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( · , I ) Fn (ℤ≥‘1)) | |
| 12 | fnresdm 6662 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 14 | 9, 13 | eqtr3i 2761 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 15 | 14 | uneq2i 4145 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 16 | 5, 15 | eqtr4i 2762 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 17 | id 22 | . . 3 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0})) | |
| 18 | 2, 4, 16, 17 | fvsnun2 7180 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| 19 | 18, 7 | eleq2s 2853 | 1 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 {csn 4606 〈cop 4612 I cid 5552 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 0cc0 11134 1c1 11135 · cmul 11139 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ℤ≥cuz 12857 seqcseq 14024 !cfa 14296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-fac 14297 |
| This theorem is referenced by: fac1 14300 facp1 14301 bcval5 14341 fprodfac 15994 logfac 26567 wilthlem3 27037 |
| Copyright terms: Public domain | W3C validator |