MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facnn Structured version   Visualization version   GIF version

Theorem facnn 13917
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
StepHypRef Expression
1 c0ex 10900 . . . 4 0 ∈ V
21a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 0 ∈ V)
3 1ex 10902 . . . 4 1 ∈ V
43a1i 11 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 1 ∈ V)
5 df-fac 13916 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
6 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
7 dfn2 12176 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
86, 7eqtr3i 2768 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
98reseq2i 5877 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
10 1z 12280 . . . . . . 7 1 ∈ ℤ
11 seqfn 13661 . . . . . . 7 (1 ∈ ℤ → seq1( · , I ) Fn (ℤ‘1))
12 fnresdm 6535 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
1310, 11, 12mp2b 10 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
149, 13eqtr3i 2768 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
1514uneq2i 4090 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
165, 15eqtr4i 2769 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
17 id 22 . . 3 (𝑁 ∈ (ℕ0 ∖ {0}) → 𝑁 ∈ (ℕ0 ∖ {0}))
182, 4, 16, 17fvsnun2 7037 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918, 7eleq2s 2857 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  {csn 4558  cop 4564   I cid 5479  cres 5582   Fn wfn 6413  cfv 6418  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  cz 12249  cuz 12511  seqcseq 13649  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-fac 13916
This theorem is referenced by:  fac1  13919  facp1  13920  bcval5  13960  fprodfac  15611  logfac  25661  wilthlem3  26124
  Copyright terms: Public domain W3C validator