Detailed syntax breakdown of Definition df-fae
| Step | Hyp | Ref
| Expression |
| 1 | | cfae 34239 |
. 2
class ~
a.e. |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vm |
. . 3
setvar 𝑚 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | cmeas 34196 |
. . . . 5
class
measures |
| 6 | 5 | crn 5686 |
. . . 4
class ran
measures |
| 7 | 6 | cuni 4907 |
. . 3
class ∪ ran measures |
| 8 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 9 | 8 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 10 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 11 | 10 | cdm 5685 |
. . . . . . . 8
class dom 𝑟 |
| 12 | 3 | cv 1539 |
. . . . . . . . . 10
class 𝑚 |
| 13 | 12 | cdm 5685 |
. . . . . . . . 9
class dom 𝑚 |
| 14 | 13 | cuni 4907 |
. . . . . . . 8
class ∪ dom 𝑚 |
| 15 | | cmap 8866 |
. . . . . . . 8
class
↑m |
| 16 | 11, 14, 15 | co 7431 |
. . . . . . 7
class (dom
𝑟 ↑m ∪ dom 𝑚) |
| 17 | 9, 16 | wcel 2108 |
. . . . . 6
wff 𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) |
| 18 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 19 | 18 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 20 | 19, 16 | wcel 2108 |
. . . . . 6
wff 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) |
| 21 | 17, 20 | wa 395 |
. . . . 5
wff (𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) |
| 22 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 23 | 22 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 24 | 23, 9 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 25 | 23, 19 | cfv 6561 |
. . . . . . . 8
class (𝑔‘𝑥) |
| 26 | 24, 25, 10 | wbr 5143 |
. . . . . . 7
wff (𝑓‘𝑥)𝑟(𝑔‘𝑥) |
| 27 | 26, 22, 14 | crab 3436 |
. . . . . 6
class {𝑥 ∈ ∪ dom 𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)} |
| 28 | | cae 34238 |
. . . . . 6
class
a.e. |
| 29 | 27, 12, 28 | wbr 5143 |
. . . . 5
wff {𝑥 ∈ ∪ dom 𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚 |
| 30 | 21, 29 | wa 395 |
. . . 4
wff ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚) |
| 31 | 30, 8, 18 | copab 5205 |
. . 3
class
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)} |
| 32 | 2, 3, 4, 7, 31 | cmpo 7433 |
. 2
class (𝑟 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ {〈𝑓,
𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) |
| 33 | 1, 32 | wceq 1540 |
1
wff ~ a.e. =
(𝑟 ∈ V, 𝑚 ∈ ∪ ran measures ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) |