Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aean Structured version   Visualization version   GIF version

Theorem aean 32112
Description: A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
aean.1 dom 𝑀 = 𝑂
Assertion
Ref Expression
aean ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Distinct variable group:   𝑥,𝑂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem aean
StepHypRef Expression
1 unrab 4236 . . . . . 6 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
2 ianor 978 . . . . . . 7 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
32rabbii 3397 . . . . . 6 {𝑥𝑂 ∣ ¬ (𝜑𝜓)} = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
41, 3eqtr4i 2769 . . . . 5 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ ¬ (𝜑𝜓)}
54fveq2i 6759 . . . 4 (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)})
65eqeq1i 2743 . . 3 ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0)
7 measbasedom 32070 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
87biimpi 215 . . . . . . . 8 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
983ad2ant1 1131 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → 𝑀 ∈ (measures‘dom 𝑀))
109adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → 𝑀 ∈ (measures‘dom 𝑀))
11 simp2 1135 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
1211adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
13 dmmeas 32069 . . . . . . . . . 10 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
14 unelsiga 32002 . . . . . . . . . 10 ((dom 𝑀 ran sigAlgebra ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
1513, 14syl3an1 1161 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
16 ssun1 4102 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
1716a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
189, 11, 15, 17measssd 32083 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
1918adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
20 simpr 484 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
2119, 20breqtrd 5096 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0)
22 measle0 32076 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
2310, 12, 21, 22syl3anc 1369 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
24 simp3 1136 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
2524adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
26 ssun2 4103 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
2726a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
289, 24, 15, 27measssd 32083 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
2928adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
3029, 20breqtrd 5096 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0)
31 measle0 32076 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3210, 25, 30, 31syl3anc 1369 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3323, 32jca 511 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
349adantr 480 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → 𝑀 ∈ (measures‘dom 𝑀))
35 measbase 32065 . . . . . . 7 (𝑀 ∈ (measures‘dom 𝑀) → dom 𝑀 ran sigAlgebra)
3634, 35syl 17 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → dom 𝑀 ran sigAlgebra)
3711adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
3824adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
3936, 37, 38, 14syl3anc 1369 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
4034, 37, 38measunl 32084 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})))
41 simprl 767 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
42 simprr 769 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
4341, 42oveq12d 7273 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = (0 +𝑒 0))
44 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
45 xaddid1 12904 . . . . . . . 8 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4644, 45ax-mp 5 . . . . . . 7 (0 +𝑒 0) = 0
4743, 46eqtrdi 2795 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = 0)
4840, 47breqtrd 5096 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0)
49 measle0 32076 . . . . 5 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀 ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5034, 39, 48, 49syl3anc 1369 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5133, 50impbida 797 . . 3 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
526, 51bitr3id 284 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
53 aean.1 . . . 4 dom 𝑀 = 𝑂
5453braew 32110 . . 3 (𝑀 ran measures → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
55543ad2ant1 1131 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
5653braew 32110 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
5753braew 32110 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
5856, 57anbi12d 630 . . 3 (𝑀 ran measures → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
59583ad2ant1 1131 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
6052, 55, 593bitr4d 310 1 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  cun 3881  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  0cc0 10802  *cxr 10939  cle 10941   +𝑒 cxad 12775  sigAlgebracsiga 31976  measurescmeas 32063  a.e.cae 32105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896  df-siga 31977  df-meas 32064  df-ae 32107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator