Proof of Theorem aean
| Step | Hyp | Ref
| Expression |
| 1 | | unrab 4315 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = {𝑥 ∈ 𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)} |
| 2 | | ianor 984 |
. . . . . . 7
⊢ (¬
(𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
| 3 | 2 | rabbii 3442 |
. . . . . 6
⊢ {𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)} |
| 4 | 1, 3 | eqtr4i 2768 |
. . . . 5
⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = {𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)} |
| 5 | 4 | fveq2i 6909 |
. . . 4
⊢ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) |
| 6 | 5 | eqeq1i 2742 |
. . 3
⊢ ((𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0) |
| 7 | | measbasedom 34203 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
| 8 | 7 | biimpi 216 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures → 𝑀 ∈ (measures‘dom 𝑀)) |
| 9 | 8 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → 𝑀 ∈ (measures‘dom 𝑀)) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → 𝑀 ∈ (measures‘dom 𝑀)) |
| 11 | | simp2 1138 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
| 13 | | dmmeas 34202 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
| 14 | | unelsiga 34135 |
. . . . . . . . . 10
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
| 15 | 13, 14 | syl3an1 1164 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
| 16 | | ssun1 4178 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) |
| 17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) |
| 18 | 9, 11, 15, 17 | measssd 34216 |
. . . . . . . 8
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
| 20 | | simpr 484 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
| 21 | 19, 20 | breqtrd 5169 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ 0) |
| 22 | | measle0 34209 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
| 23 | 10, 12, 21, 22 | syl3anc 1373 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
| 24 | | simp3 1139 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
| 25 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
| 26 | | ssun2 4179 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) |
| 27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) |
| 28 | 9, 24, 15, 27 | measssd 34216 |
. . . . . . . 8
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
| 29 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
| 30 | 29, 20 | breqtrd 5169 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ 0) |
| 31 | | measle0 34209 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 32 | 10, 25, 30, 31 | syl3anc 1373 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 33 | 23, 32 | jca 511 |
. . . 4
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 34 | 9 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → 𝑀 ∈ (measures‘dom 𝑀)) |
| 35 | | measbase 34198 |
. . . . . . 7
⊢ (𝑀 ∈ (measures‘dom
𝑀) → dom 𝑀 ∈ ∪ ran sigAlgebra) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
| 37 | 11 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
| 38 | 24 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
| 39 | 36, 37, 38, 14 | syl3anc 1373 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
| 40 | 34, 37, 38 | measunl 34217 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
| 41 | | simprl 771 |
. . . . . . . 8
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
| 42 | | simprr 773 |
. . . . . . . 8
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 43 | 41, 42 | oveq12d 7449 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = (0 +𝑒
0)) |
| 44 | | 0xr 11308 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 45 | | xaddrid 13283 |
. . . . . . . 8
⊢ (0 ∈
ℝ* → (0 +𝑒 0) = 0) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . 7
⊢ (0
+𝑒 0) = 0 |
| 47 | 43, 46 | eqtrdi 2793 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
| 48 | 40, 47 | breqtrd 5169 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ 0) |
| 49 | | measle0 34209 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀 ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ 0) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
| 50 | 34, 39, 48, 49 | syl3anc 1373 |
. . . 4
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
| 51 | 33, 50 | impbida 801 |
. . 3
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0 ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
| 52 | 6, 51 | bitr3id 285 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0 ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
| 53 | | aean.1 |
. . . 4
⊢ ∪ dom 𝑀 = 𝑂 |
| 54 | 53 | braew 34243 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0)) |
| 55 | 54 | 3ad2ant1 1134 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0)) |
| 56 | 53 | braew 34243 |
. . . 4
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0)) |
| 57 | 53 | braew 34243 |
. . . 4
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 58 | 56, 57 | anbi12d 632 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures → (({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
| 59 | 58 | 3ad2ant1 1134 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
| 60 | 52, 55, 59 | 3bitr4d 311 |
1
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀))) |