Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aean Structured version   Visualization version   GIF version

Theorem aean 34241
Description: A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
aean.1 dom 𝑀 = 𝑂
Assertion
Ref Expression
aean ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Distinct variable group:   𝑥,𝑂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem aean
StepHypRef Expression
1 unrab 4281 . . . . . 6 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
2 ianor 983 . . . . . . 7 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
32rabbii 3414 . . . . . 6 {𝑥𝑂 ∣ ¬ (𝜑𝜓)} = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
41, 3eqtr4i 2756 . . . . 5 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ ¬ (𝜑𝜓)}
54fveq2i 6864 . . . 4 (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)})
65eqeq1i 2735 . . 3 ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0)
7 measbasedom 34199 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
87biimpi 216 . . . . . . . 8 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
983ad2ant1 1133 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → 𝑀 ∈ (measures‘dom 𝑀))
109adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → 𝑀 ∈ (measures‘dom 𝑀))
11 simp2 1137 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
1211adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
13 dmmeas 34198 . . . . . . . . . 10 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
14 unelsiga 34131 . . . . . . . . . 10 ((dom 𝑀 ran sigAlgebra ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
1513, 14syl3an1 1163 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
16 ssun1 4144 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
1716a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
189, 11, 15, 17measssd 34212 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
1918adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
20 simpr 484 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
2119, 20breqtrd 5136 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0)
22 measle0 34205 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
2310, 12, 21, 22syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
24 simp3 1138 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
2524adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
26 ssun2 4145 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
2726a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
289, 24, 15, 27measssd 34212 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
2928adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
3029, 20breqtrd 5136 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0)
31 measle0 34205 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3210, 25, 30, 31syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3323, 32jca 511 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
349adantr 480 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → 𝑀 ∈ (measures‘dom 𝑀))
35 measbase 34194 . . . . . . 7 (𝑀 ∈ (measures‘dom 𝑀) → dom 𝑀 ran sigAlgebra)
3634, 35syl 17 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → dom 𝑀 ran sigAlgebra)
3711adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
3824adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
3936, 37, 38, 14syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
4034, 37, 38measunl 34213 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})))
41 simprl 770 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
42 simprr 772 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
4341, 42oveq12d 7408 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = (0 +𝑒 0))
44 0xr 11228 . . . . . . . 8 0 ∈ ℝ*
45 xaddrid 13208 . . . . . . . 8 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4644, 45ax-mp 5 . . . . . . 7 (0 +𝑒 0) = 0
4743, 46eqtrdi 2781 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = 0)
4840, 47breqtrd 5136 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0)
49 measle0 34205 . . . . 5 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀 ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5034, 39, 48, 49syl3anc 1373 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5133, 50impbida 800 . . 3 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
526, 51bitr3id 285 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
53 aean.1 . . . 4 dom 𝑀 = 𝑂
5453braew 34239 . . 3 (𝑀 ran measures → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
55543ad2ant1 1133 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
5653braew 34239 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
5753braew 34239 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
5856, 57anbi12d 632 . . 3 (𝑀 ran measures → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
59583ad2ant1 1133 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
6052, 55, 593bitr4d 311 1 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  cun 3915  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214  cle 11216   +𝑒 cxad 13077  sigAlgebracsiga 34105  measurescmeas 34192  a.e.cae 34234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025  df-siga 34106  df-meas 34193  df-ae 34236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator