Proof of Theorem aean
Step | Hyp | Ref
| Expression |
1 | | unrab 4200 |
. . . . . 6
⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = {𝑥 ∈ 𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)} |
2 | | ianor 976 |
. . . . . . 7
⊢ (¬
(𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) |
3 | 2 | rabbii 3421 |
. . . . . 6
⊢ {𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)} |
4 | 1, 3 | eqtr4i 2824 |
. . . . 5
⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = {𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)} |
5 | 4 | fveq2i 6548 |
. . . 4
⊢ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) |
6 | 5 | eqeq1i 2802 |
. . 3
⊢ ((𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0) |
7 | | measbasedom 31074 |
. . . . . . . . 9
⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) |
8 | 7 | biimpi 217 |
. . . . . . . 8
⊢ (𝑀 ∈ ∪ ran measures → 𝑀 ∈ (measures‘dom 𝑀)) |
9 | 8 | 3ad2ant1 1126 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → 𝑀 ∈ (measures‘dom 𝑀)) |
10 | 9 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → 𝑀 ∈ (measures‘dom 𝑀)) |
11 | | simp2 1130 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
12 | 11 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
13 | | dmmeas 31073 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
14 | | unelsiga 31006 |
. . . . . . . . . 10
⊢ ((dom
𝑀 ∈ ∪ ran sigAlgebra ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
15 | 13, 14 | syl3an1 1156 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
16 | | ssun1 4075 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) |
18 | 9, 11, 15, 17 | measssd 31087 |
. . . . . . . 8
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
19 | 18 | adantr 481 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
20 | | simpr 485 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
21 | 19, 20 | breqtrd 4994 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ 0) |
22 | | measle0 31080 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) ≤ 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
23 | 10, 12, 21, 22 | syl3anc 1364 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
24 | | simp3 1131 |
. . . . . . 7
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
26 | | ssun2 4076 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) |
27 | 26 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) |
28 | 9, 24, 15, 27 | measssd 31087 |
. . . . . . . 8
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
30 | 29, 20 | breqtrd 4994 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ 0) |
31 | | measle0 31080 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ≤ 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
32 | 10, 25, 30, 31 | syl3anc 1364 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
33 | 23, 32 | jca 512 |
. . . 4
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
34 | 9 | adantr 481 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → 𝑀 ∈ (measures‘dom 𝑀)) |
35 | | measbase 31069 |
. . . . . . 7
⊢ (𝑀 ∈ (measures‘dom
𝑀) → dom 𝑀 ∈ ∪ ran sigAlgebra) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → dom 𝑀 ∈ ∪ ran
sigAlgebra) |
37 | 11 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀) |
38 | 24 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) |
39 | 36, 37, 38, 14 | syl3anc 1364 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀) |
40 | 34, 37, 38 | measunl 31088 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}))) |
41 | | simprl 767 |
. . . . . . . 8
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0) |
42 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
43 | 41, 42 | oveq12d 7041 |
. . . . . . 7
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = (0 +𝑒
0)) |
44 | | 0xr 10541 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
45 | | xaddid1 12488 |
. . . . . . . 8
⊢ (0 ∈
ℝ* → (0 +𝑒 0) = 0) |
46 | 44, 45 | ax-mp 5 |
. . . . . . 7
⊢ (0
+𝑒 0) = 0 |
47 | 43, 46 | syl6eq 2849 |
. . . . . 6
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
48 | 40, 47 | breqtrd 4994 |
. . . . 5
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ 0) |
49 | | measle0 31080 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘dom
𝑀) ∧ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀 ∧ (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) ≤ 0) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
50 | 34, 39, 48, 49 | syl3anc 1364 |
. . . 4
⊢ (((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0) |
51 | 33, 50 | impbida 797 |
. . 3
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘({𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∪ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓})) = 0 ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
52 | 6, 51 | syl5bbr 286 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0 ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
53 | | aean.1 |
. . . 4
⊢ ∪ dom 𝑀 = 𝑂 |
54 | 53 | braew 31114 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0)) |
55 | 54 | 3ad2ant1 1126 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ (𝜑 ∧ 𝜓)}) = 0)) |
56 | 53 | braew 31114 |
. . . 4
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0)) |
57 | 53 | braew 31114 |
. . . 4
⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
58 | 56, 57 | anbi12d 630 |
. . 3
⊢ (𝑀 ∈ ∪ ran measures → (({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
59 | 58 | 3ad2ant1 1126 |
. 2
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0))) |
60 | 52, 55, 59 | 3bitr4d 312 |
1
⊢ ((𝑀 ∈ ∪ ran measures ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥 ∈ 𝑂 ∣ (𝜑 ∧ 𝜓)}a.e.𝑀 ↔ ({𝑥 ∈ 𝑂 ∣ 𝜑}a.e.𝑀 ∧ {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀))) |