Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aean Structured version   Visualization version   GIF version

Theorem aean 34210
Description: A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypothesis
Ref Expression
aean.1 dom 𝑀 = 𝑂
Assertion
Ref Expression
aean ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Distinct variable group:   𝑥,𝑂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem aean
StepHypRef Expression
1 unrab 4268 . . . . . 6 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
2 ianor 983 . . . . . . 7 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
32rabbii 3402 . . . . . 6 {𝑥𝑂 ∣ ¬ (𝜑𝜓)} = {𝑥𝑂 ∣ (¬ 𝜑 ∨ ¬ 𝜓)}
41, 3eqtr4i 2755 . . . . 5 ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) = {𝑥𝑂 ∣ ¬ (𝜑𝜓)}
54fveq2i 6829 . . . 4 (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)})
65eqeq1i 2734 . . 3 ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0)
7 measbasedom 34168 . . . . . . . . 9 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
87biimpi 216 . . . . . . . 8 (𝑀 ran measures → 𝑀 ∈ (measures‘dom 𝑀))
983ad2ant1 1133 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → 𝑀 ∈ (measures‘dom 𝑀))
109adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → 𝑀 ∈ (measures‘dom 𝑀))
11 simp2 1137 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
1211adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
13 dmmeas 34167 . . . . . . . . . 10 (𝑀 ran measures → dom 𝑀 ran sigAlgebra)
14 unelsiga 34100 . . . . . . . . . 10 ((dom 𝑀 ran sigAlgebra ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
1513, 14syl3an1 1163 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
16 ssun1 4131 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
1716a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜑} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
189, 11, 15, 17measssd 34181 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
1918adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
20 simpr 484 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
2119, 20breqtrd 5121 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0)
22 measle0 34174 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
2310, 12, 21, 22syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
24 simp3 1138 . . . . . . 7 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
2524adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
26 ssun2 4132 . . . . . . . . . 10 {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})
2726a1i 11 . . . . . . . . 9 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}))
289, 24, 15, 27measssd 34181 . . . . . . . 8 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
2928adantr 480 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})))
3029, 20breqtrd 5121 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0)
31 measle0 34174 . . . . . 6 ((𝑀 ∈ (measures‘dom 𝑀) ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) ≤ 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3210, 25, 30, 31syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
3323, 32jca 511 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
349adantr 480 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → 𝑀 ∈ (measures‘dom 𝑀))
35 measbase 34163 . . . . . . 7 (𝑀 ∈ (measures‘dom 𝑀) → dom 𝑀 ran sigAlgebra)
3634, 35syl 17 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → dom 𝑀 ran sigAlgebra)
3711adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀)
3824adantr 480 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀)
3936, 37, 38, 14syl3anc 1373 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀)
4034, 37, 38measunl 34182 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})))
41 simprl 770 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0)
42 simprr 772 . . . . . . . 8 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
4341, 42oveq12d 7371 . . . . . . 7 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = (0 +𝑒 0))
44 0xr 11181 . . . . . . . 8 0 ∈ ℝ*
45 xaddrid 13161 . . . . . . . 8 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
4644, 45ax-mp 5 . . . . . . 7 (0 +𝑒 0) = 0
4743, 46eqtrdi 2780 . . . . . 6 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) +𝑒 (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓})) = 0)
4840, 47breqtrd 5121 . . . . 5 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0)
49 measle0 34174 . . . . 5 ((𝑀 ∈ (measures‘dom 𝑀) ∧ ({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓}) ∈ dom 𝑀 ∧ (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) ≤ 0) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5034, 39, 48, 49syl3anc 1373 . . . 4 (((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) ∧ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)) → (𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0)
5133, 50impbida 800 . . 3 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘({𝑥𝑂 ∣ ¬ 𝜑} ∪ {𝑥𝑂 ∣ ¬ 𝜓})) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
526, 51bitr3id 285 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ((𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0 ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
53 aean.1 . . . 4 dom 𝑀 = 𝑂
5453braew 34208 . . 3 (𝑀 ran measures → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
55543ad2ant1 1133 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ (𝜑𝜓)}) = 0))
5653braew 34208 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
5753braew 34208 . . . 4 (𝑀 ran measures → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
5856, 57anbi12d 632 . . 3 (𝑀 ran measures → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
59583ad2ant1 1133 . 2 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → (({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀) ↔ ((𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0 ∧ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)))
6052, 55, 593bitr4d 311 1 ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  cun 3903  wss 3905   cuni 4861   class class class wbr 5095  dom cdm 5623  ran crn 5624  cfv 6486  (class class class)co 7353  0cc0 11028  *cxr 11167  cle 11169   +𝑒 cxad 13030  sigAlgebracsiga 34074  measurescmeas 34161  a.e.cae 34203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-ordt 17423  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-ps 18490  df-tsr 18491  df-plusf 18531  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-abv 20712  df-lmod 20783  df-scaf 20784  df-sra 21095  df-rgmod 21096  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-tmd 23975  df-tgp 23976  df-tsms 24030  df-trg 24063  df-xms 24224  df-ms 24225  df-tms 24226  df-nm 24486  df-ngp 24487  df-nrg 24489  df-nlm 24490  df-ii 24786  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-esum 33994  df-siga 34075  df-meas 34162  df-ae 34205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator