Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → 𝑟 = 𝑅) |
2 | 1 | dmeqd 5803 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → dom 𝑟 = dom 𝑅) |
3 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) |
4 | 3 | dmeqd 5803 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → dom 𝑚 = dom 𝑀) |
5 | 4 | unieqd 4850 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → ∪ dom
𝑚 = ∪ dom 𝑀) |
6 | 2, 5 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → (dom 𝑟 ↑m ∪ dom 𝑚) = (dom 𝑅 ↑m ∪ dom 𝑀)) |
7 | 6 | eleq2d 2824 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀))) |
8 | 6 | eleq2d 2824 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀))) |
9 | 7, 8 | anbi12d 630 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)))) |
10 | 1 | breqd 5081 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → ((𝑓‘𝑥)𝑟(𝑔‘𝑥) ↔ (𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
11 | 5, 10 | rabeqbidv 3410 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)} = {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}) |
12 | 11, 3 | breq12d 5083 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → ({𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚 ↔ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)) |
13 | 9, 12 | anbi12d 630 |
. . 3
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀))) |
14 | 13 | opabbidv 5136 |
. 2
⊢ ((𝑟 = 𝑅 ∧ 𝑚 = 𝑀) → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) |
15 | | df-fae 32113 |
. 2
⊢ ~ a.e. =
(𝑟 ∈ V, 𝑚 ∈ ∪ ran measures ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) |
16 | | ovex 7288 |
. . . 4
⊢ (dom
𝑅 ↑m ∪ dom 𝑀) ∈ V |
17 | 16, 16 | xpex 7581 |
. . 3
⊢ ((dom
𝑅 ↑m ∪ dom 𝑀) × (dom 𝑅 ↑m ∪ dom 𝑀)) ∈ V |
18 | | opabssxp 5669 |
. . 3
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅 ↑m ∪ dom 𝑀) × (dom 𝑅 ↑m ∪ dom 𝑀)) |
19 | 17, 18 | ssexi 5241 |
. 2
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} ∈ V |
20 | 14, 15, 19 | ovmpoa 7406 |
1
⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom
𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) |