Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   GIF version

Theorem faeval 31880
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Distinct variable groups:   𝑓,𝑔,𝑥,𝑀   𝑅,𝑓,𝑔,𝑥

Proof of Theorem faeval
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑟 = 𝑅)
21dmeqd 5759 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑟 = dom 𝑅)
3 simpr 488 . . . . . . . . 9 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5759 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
54unieqd 4819 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
62, 5oveq12d 7209 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → (dom 𝑟m dom 𝑚) = (dom 𝑅m dom 𝑀))
76eleq2d 2816 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅m dom 𝑀)))
86eleq2d 2816 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅m dom 𝑀)))
97, 8anbi12d 634 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀))))
101breqd 5050 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓𝑥)𝑟(𝑔𝑥) ↔ (𝑓𝑥)𝑅(𝑔𝑥)))
115, 10rabeqbidv 3386 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)})
1211, 3breq12d 5052 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ({𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚 ↔ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀))
139, 12anbi12d 634 . . 3 ((𝑟 = 𝑅𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)))
1413opabbidv 5105 . 2 ((𝑟 = 𝑅𝑚 = 𝑀) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
15 df-fae 31879 . 2 ~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
16 ovex 7224 . . . 4 (dom 𝑅m dom 𝑀) ∈ V
1716, 16xpex 7516 . . 3 ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀)) ∈ V
18 opabssxp 5625 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀))
1917, 18ssexi 5200 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ∈ V
2014, 15, 19ovmpoa 7342 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {crab 3055  Vcvv 3398   cuni 4805   class class class wbr 5039  {copab 5101   × cxp 5534  dom cdm 5536  ran crn 5537  cfv 6358  (class class class)co 7191  m cmap 8486  measurescmeas 31829  a.e.cae 31871  ~ a.e.cfae 31872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-fae 31879
This theorem is referenced by:  relfae  31881  brfae  31882
  Copyright terms: Public domain W3C validator