Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   GIF version

Theorem faeval 34236
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Distinct variable groups:   𝑓,𝑔,𝑥,𝑀   𝑅,𝑓,𝑔,𝑥

Proof of Theorem faeval
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑟 = 𝑅)
21dmeqd 5869 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑟 = dom 𝑅)
3 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5869 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
54unieqd 4884 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
62, 5oveq12d 7405 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → (dom 𝑟m dom 𝑚) = (dom 𝑅m dom 𝑀))
76eleq2d 2814 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅m dom 𝑀)))
86eleq2d 2814 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅m dom 𝑀)))
97, 8anbi12d 632 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀))))
101breqd 5118 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓𝑥)𝑟(𝑔𝑥) ↔ (𝑓𝑥)𝑅(𝑔𝑥)))
115, 10rabeqbidv 3424 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)})
1211, 3breq12d 5120 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ({𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚 ↔ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀))
139, 12anbi12d 632 . . 3 ((𝑟 = 𝑅𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)))
1413opabbidv 5173 . 2 ((𝑟 = 𝑅𝑚 = 𝑀) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
15 df-fae 34235 . 2 ~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
16 ovex 7420 . . . 4 (dom 𝑅m dom 𝑀) ∈ V
1716, 16xpex 7729 . . 3 ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀)) ∈ V
18 opabssxp 5731 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀))
1917, 18ssexi 5277 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ∈ V
2014, 15, 19ovmpoa 7544 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447   cuni 4871   class class class wbr 5107  {copab 5169   × cxp 5636  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  m cmap 8799  measurescmeas 34185  a.e.cae 34227  ~ a.e.cfae 34228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fae 34235
This theorem is referenced by:  relfae  34237  brfae  34238
  Copyright terms: Public domain W3C validator