Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faeval Structured version   Visualization version   GIF version

Theorem faeval 33935
Description: Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
faeval ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Distinct variable groups:   𝑓,𝑔,𝑥,𝑀   𝑅,𝑓,𝑔,𝑥

Proof of Theorem faeval
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑟 = 𝑅)
21dmeqd 5907 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑟 = dom 𝑅)
3 simpr 483 . . . . . . . . 9 ((𝑟 = 𝑅𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5907 . . . . . . . 8 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
54unieqd 4921 . . . . . . 7 ((𝑟 = 𝑅𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
62, 5oveq12d 7435 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → (dom 𝑟m dom 𝑚) = (dom 𝑅m dom 𝑀))
76eleq2d 2811 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑓 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑓 ∈ (dom 𝑅m dom 𝑀)))
86eleq2d 2811 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → (𝑔 ∈ (dom 𝑟m dom 𝑚) ↔ 𝑔 ∈ (dom 𝑅m dom 𝑀)))
97, 8anbi12d 630 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ↔ (𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀))))
101breqd 5159 . . . . . 6 ((𝑟 = 𝑅𝑚 = 𝑀) → ((𝑓𝑥)𝑟(𝑔𝑥) ↔ (𝑓𝑥)𝑅(𝑔𝑥)))
115, 10rabeqbidv 3437 . . . . 5 ((𝑟 = 𝑅𝑚 = 𝑀) → {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)})
1211, 3breq12d 5161 . . . 4 ((𝑟 = 𝑅𝑚 = 𝑀) → ({𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚 ↔ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀))
139, 12anbi12d 630 . . 3 ((𝑟 = 𝑅𝑚 = 𝑀) → (((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚) ↔ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)))
1413opabbidv 5214 . 2 ((𝑟 = 𝑅𝑚 = 𝑀) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
15 df-fae 33934 . 2 ~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
16 ovex 7450 . . . 4 (dom 𝑅m dom 𝑀) ∈ V
1716, 16xpex 7754 . . 3 ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀)) ∈ V
18 opabssxp 5769 . . 3 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ⊆ ((dom 𝑅m dom 𝑀) × (dom 𝑅m dom 𝑀))
1917, 18ssexi 5322 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} ∈ V
2014, 15, 19ovmpoa 7574 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463   cuni 4908   class class class wbr 5148  {copab 5210   × cxp 5675  dom cdm 5677  ran crn 5678  cfv 6547  (class class class)co 7417  m cmap 8843  measurescmeas 33884  a.e.cae 33926  ~ a.e.cfae 33927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-fae 33934
This theorem is referenced by:  relfae  33936  brfae  33937
  Copyright terms: Public domain W3C validator