![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fil | Structured version Visualization version GIF version |
Description: The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in ℝ. With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
df-fil | ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfil 23874 | . 2 class Fil | |
2 | vz | . . 3 setvar 𝑧 | |
3 | cvv 3488 | . . 3 class V | |
4 | vf | . . . . . . . . 9 setvar 𝑓 | |
5 | 4 | cv 1536 | . . . . . . . 8 class 𝑓 |
6 | vx | . . . . . . . . . 10 setvar 𝑥 | |
7 | 6 | cv 1536 | . . . . . . . . 9 class 𝑥 |
8 | 7 | cpw 4622 | . . . . . . . 8 class 𝒫 𝑥 |
9 | 5, 8 | cin 3975 | . . . . . . 7 class (𝑓 ∩ 𝒫 𝑥) |
10 | c0 4352 | . . . . . . 7 class ∅ | |
11 | 9, 10 | wne 2946 | . . . . . 6 wff (𝑓 ∩ 𝒫 𝑥) ≠ ∅ |
12 | 6, 4 | wel 2109 | . . . . . 6 wff 𝑥 ∈ 𝑓 |
13 | 11, 12 | wi 4 | . . . . 5 wff ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) |
14 | 2 | cv 1536 | . . . . . 6 class 𝑧 |
15 | 14 | cpw 4622 | . . . . 5 class 𝒫 𝑧 |
16 | 13, 6, 15 | wral 3067 | . . . 4 wff ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) |
17 | cfbas 21375 | . . . . 5 class fBas | |
18 | 14, 17 | cfv 6573 | . . . 4 class (fBas‘𝑧) |
19 | 16, 4, 18 | crab 3443 | . . 3 class {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)} |
20 | 2, 3, 19 | cmpt 5249 | . 2 class (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
21 | 1, 20 | wceq 1537 | 1 wff Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
Colors of variables: wff setvar class |
This definition is referenced by: isfil 23876 filunirn 23911 |
Copyright terms: Public domain | W3C validator |