MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fil Structured version   Visualization version   GIF version

Definition df-fil 23006
Description: The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in . With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
df-fil Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
Distinct variable group:   𝑥,𝑓,𝑧

Detailed syntax breakdown of Definition df-fil
StepHypRef Expression
1 cfil 23005 . 2 class Fil
2 vz . . 3 setvar 𝑧
3 cvv 3433 . . 3 class V
4 vf . . . . . . . . 9 setvar 𝑓
54cv 1538 . . . . . . . 8 class 𝑓
6 vx . . . . . . . . . 10 setvar 𝑥
76cv 1538 . . . . . . . . 9 class 𝑥
87cpw 4534 . . . . . . . 8 class 𝒫 𝑥
95, 8cin 3887 . . . . . . 7 class (𝑓 ∩ 𝒫 𝑥)
10 c0 4257 . . . . . . 7 class
119, 10wne 2944 . . . . . 6 wff (𝑓 ∩ 𝒫 𝑥) ≠ ∅
126, 4wel 2108 . . . . . 6 wff 𝑥𝑓
1311, 12wi 4 . . . . 5 wff ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)
142cv 1538 . . . . . 6 class 𝑧
1514cpw 4534 . . . . 5 class 𝒫 𝑧
1613, 6, 15wral 3065 . . . 4 wff 𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)
17 cfbas 20594 . . . . 5 class fBas
1814, 17cfv 6437 . . . 4 class (fBas‘𝑧)
1916, 4, 18crab 3069 . . 3 class {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)}
202, 3, 19cmpt 5158 . 2 class (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
211, 20wceq 1539 1 wff Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
Colors of variables: wff setvar class
This definition is referenced by:  isfil  23007  filunirn  23042
  Copyright terms: Public domain W3C validator