| Metamath
Proof Explorer Theorem List (p. 236 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | txuni2 23501* | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 | ||
| Theorem | txbasex 23502* | The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) | ||
| Theorem | txbas 23503* | The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) | ||
| Theorem | eltx 23504* | A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) | ||
| Theorem | txtop 23505 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | ||
| Theorem | ptval 23506* | The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘𝐵)) | ||
| Theorem | ptpjpre1 23507* | The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.) |
| ⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) | ||
| Theorem | elpt 23508* | Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (𝑆 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) | ||
| Theorem | elptr 23509* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ 𝐵) | ||
| Theorem | elptr2 23510* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ 𝐵) | ||
| Theorem | ptbasid 23511* | The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) | ||
| Theorem | ptuni2 23512* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) | ||
| Theorem | ptbasin 23513* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∩ 𝑌) ∈ 𝐵) | ||
| Theorem | ptbasin2 23514* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) | ||
| Theorem | ptbas 23515* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) | ||
| Theorem | ptpjpre2 23516* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) | ||
| Theorem | ptbasfi 23517* | The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) | ||
| Theorem | pttop 23518 | The product topology is a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∏t‘𝐹) ∈ Top) | ||
| Theorem | ptopn 23519* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ (∏t‘𝐹)) | ||
| Theorem | ptopn2 23520* | A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) | ||
| Theorem | xkotf 23521* | Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) | ||
| Theorem | xkobval 23522* | Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | ||
| Theorem | xkoval 23523* | Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran 𝑇))) | ||
| Theorem | xkotop 23524 | The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | ||
| Theorem | xkoopn 23525* | A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑅 ↾t 𝐴) ∈ Comp) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ (𝑆 ↑ko 𝑅)) | ||
| Theorem | txtopi 23526 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top ⇒ ⊢ (𝑅 ×t 𝑆) ∈ Top | ||
| Theorem | txtopon 23527 | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | ||
| Theorem | txuni 23528 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | ||
| Theorem | txunii 23529 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) | ||
| Theorem | ptuni 23530* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑥 ∈ 𝐴 ∪ (𝐹‘𝑥) = ∪ 𝐽) | ||
| Theorem | ptunimpt 23531* | Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) | ||
| Theorem | pttopon 23532* | The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) | ||
| Theorem | pttoponconst 23533 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) | ||
| Theorem | ptuniconst 23534 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) & ⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) | ||
| Theorem | xkouni 23535 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) | ||
| Theorem | xkotopon 23536 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) | ||
| Theorem | ptval2 23537* | The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐺 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺)))) | ||
| Theorem | txopn 23538 | The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) | ||
| Theorem | txcld 23539 | The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆))) | ||
| Theorem | txcls 23540 | Closure of a rectangle in the product topology. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) = (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) | ||
| Theorem | txss12 23541 | Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) | ||
| Theorem | txbasval 23542 | It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) | ||
| Theorem | neitx 23543 | The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷))) | ||
| Theorem | txcnpi 23544* | Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉)) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐹 “ 𝑈))) | ||
| Theorem | tx1cn 23545 | Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) | ||
| Theorem | tx2cn 23546 | Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) | ||
| Theorem | ptpjcn 23547* | Continuity of a projection map into a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝑌 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) → (𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) ∈ (𝐽 Cn (𝐹‘𝐼))) | ||
| Theorem | ptpjopn 23548* | The projection map is an open map. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝑌 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐼 ∈ 𝐴) ∧ 𝑈 ∈ 𝐽) → ((𝑥 ∈ 𝑌 ↦ (𝑥‘𝐼)) “ 𝑈) ∈ (𝐹‘𝐼)) | ||
| Theorem | ptcld 23549* | A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘𝐹))) | ||
| Theorem | ptcldmpt 23550* | A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) | ||
| Theorem | ptclsg 23551* | The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) | ||
| Theorem | ptcls 23552* | The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) | ||
| Theorem | dfac14lem 23553* | Lemma for dfac14 23554. By equipping 𝑆 ∪ {𝑃} for some 𝑃 ∉ 𝑆 with the particular point topology, we can show that 𝑃 is in the closure of 𝑆; hence the sequence 𝑃(𝑥) is in the product of the closures, and we can utilize this instance of ptcls 23552 to extract an element of the closure of X𝑘 ∈ 𝐼𝑆. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) & ⊢ 𝑃 = 𝒫 ∪ 𝑆 & ⊢ 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃 ∈ 𝑦 → 𝑦 = (𝑆 ∪ {𝑃}))} & ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ (𝜑 → ((cls‘𝐽)‘X𝑥 ∈ 𝐼 𝑆) = X𝑥 ∈ 𝐼 ((cls‘𝑅)‘𝑆)) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) | ||
| Theorem | dfac14 23554* | Theorem ptcls 23552 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠 ∈ X 𝑘 ∈ dom 𝑓𝒫 ∪ (𝑓‘𝑘)((cls‘(∏t‘𝑓))‘X𝑘 ∈ dom 𝑓(𝑠‘𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓‘𝑘))‘(𝑠‘𝑘)))) | ||
| Theorem | xkoccn 23555* | The "constant function" function which maps 𝑥 ∈ 𝑌 to the constant function 𝑧 ∈ 𝑋 ↦ 𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥 ∈ 𝑌 ↦ (𝑧 ∈ 𝑋 ↦ 𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅))) | ||
| Theorem | txcnp 23556* | If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) | ||
| Theorem | ptcnplem 23557* | Lemma for ptcnp 23558. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) & ⊢ Ⅎ𝑘𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝐺 Fn 𝐼) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ Fin) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (𝐺‘𝑘) = ∪ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) | ||
| Theorem | ptcnp 23558* | If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷)) | ||
| Theorem | upxp 23559* | Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝑃 = (1st ↾ (𝐵 × 𝐶)) & ⊢ 𝑄 = (2nd ↾ (𝐵 × 𝐶)) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
| Theorem | txcnmpt 23560* | A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝐻 = (𝑥 ∈ 𝑊 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) | ||
| Theorem | uptx 23561* | Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×t 𝑆) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | ||
| Theorem | txcn 23562 | A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌) & ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾ 𝑍) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) | ||
| Theorem | ptcn 23563* | If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐾 = (∏t‘𝐹) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐼⟶Top) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | prdstopn 23564 | Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝑂 = (TopOpen‘𝑌) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
| Theorem | prdstps 23565 | A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopSp) | ||
| Theorem | pwstps 23566 | A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ TopSp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ TopSp) | ||
| Theorem | txrest 23567 | The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅 ↾t 𝐴) ×t (𝑆 ↾t 𝐵))) | ||
| Theorem | txdis 23568 | The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) | ||
| Theorem | txindislem 23569 | Lemma for txindis 23570. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)) | ||
| Theorem | txindis 23570 | The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)} | ||
| Theorem | txdis1cn 23571* | A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) | ||
| Theorem | txlly 23572* | If the property 𝐴 is preserved under topological products, then so is the property of being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ Locally 𝐴 ∧ 𝑆 ∈ Locally 𝐴) → (𝑅 ×t 𝑆) ∈ Locally 𝐴) | ||
| Theorem | txnlly 23573* | If the property 𝐴 is preserved under topological products, then so is the property of being n-locally 𝐴. (Contributed by Mario Carneiro, 13-Apr-2015.) |
| ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (𝑗 ×t 𝑘) ∈ 𝐴) ⇒ ⊢ ((𝑅 ∈ 𝑛-Locally 𝐴 ∧ 𝑆 ∈ 𝑛-Locally 𝐴) → (𝑅 ×t 𝑆) ∈ 𝑛-Locally 𝐴) | ||
| Theorem | pthaus 23574 | The product of a collection of Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Haus) → (∏t‘𝐹) ∈ Haus) | ||
| Theorem | ptrescn 23575* | Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝐾 = (∏t‘(𝐹 ↾ 𝐵)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ (𝑥 ↾ 𝐵)) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | txtube 23576* | The "tube lemma". If 𝑋 is compact and there is an open set 𝑈 containing the line 𝑋 × {𝐴}, then there is a "tube" 𝑋 × 𝑢 for some neighborhood 𝑢 of 𝐴 which is entirely contained within 𝑈. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝑈 ∈ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × {𝐴}) ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ 𝑈)) | ||
| Theorem | txcmplem1 23577* | Lemma for txcmp 23579. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) | ||
| Theorem | txcmplem2 23578* | Lemma for txcmp 23579. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 & ⊢ (𝜑 → 𝑅 ∈ Comp) & ⊢ (𝜑 → 𝑆 ∈ Comp) & ⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) & ⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑌) = ∪ 𝑣) | ||
| Theorem | txcmp 23579 | The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.) |
| ⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp) | ||
| Theorem | txcmpb 23580 | The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑅 ×t 𝑆) ∈ Comp ↔ (𝑅 ∈ Comp ∧ 𝑆 ∈ Comp))) | ||
| Theorem | hausdiag 23581 | A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)))) | ||
| Theorem | hauseqlcld 23582 | In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ 𝐺) ∈ (Clsd‘𝐽)) | ||
| Theorem | txhaus 23583 | The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ ((𝑅 ∈ Haus ∧ 𝑆 ∈ Haus) → (𝑅 ×t 𝑆) ∈ Haus) | ||
| Theorem | txlm 23584* | Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⇒ ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) | ||
| Theorem | lmcn2 23585* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) & ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) & ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) | ||
| Theorem | tx1stc 23586 | The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ×t 𝑆) ∈ 1stω) | ||
| Theorem | tx2ndc 23587 | The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω) → (𝑅 ×t 𝑆) ∈ 2ndω) | ||
| Theorem | txkgen 23588 | The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen) | ||
| Theorem | xkohaus 23589 | If the codomain space is Hausdorff, then the compact-open topology of continuous functions is also Hausdorff. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Haus) → (𝑆 ↑ko 𝑅) ∈ Haus) | ||
| Theorem | xkoptsub 23590 | The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐽 = (∏t‘(𝑋 × {𝑆})) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) | ||
| Theorem | xkopt 23591 | The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅}))) | ||
| Theorem | xkopjcn 23592* | Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both 𝑓 and 𝐴 as a function on (𝑆 ↑ko 𝑅) ×t 𝑅, but not without stronger assumptions on 𝑅; see xkofvcn 23620.) (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋) → (𝑓 ∈ (𝑅 Cn 𝑆) ↦ (𝑓‘𝐴)) ∈ ((𝑆 ↑ko 𝑅) Cn 𝑆)) | ||
| Theorem | xkoco1cn 23593* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝑔 ∘ 𝐹 is a continuous function on function spaces. (The reason we prove this and xkoco2cn 23594 independently of the more general xkococn 23596 is because that requires some inconvenient extra assumptions on 𝑆.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝜑 → 𝑇 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 Cn 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ↑ko 𝑆) Cn (𝑇 ↑ko 𝑅))) | ||
| Theorem | xkoco2cn 23594* | If 𝐹 is a continuous function, then 𝑔 ↦ 𝐹 ∘ 𝑔 is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (𝑆 Cn 𝑇)) ⇒ ⊢ (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) ∈ ((𝑆 ↑ko 𝑅) Cn (𝑇 ↑ko 𝑅))) | ||
| Theorem | xkococnlem 23595* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) & ⊢ (𝜑 → 𝑆 ∈ 𝑛-Locally Comp) & ⊢ (𝜑 → 𝐾 ⊆ ∪ 𝑅) & ⊢ (𝜑 → (𝑅 ↾t 𝐾) ∈ Comp) & ⊢ (𝜑 → 𝑉 ∈ 𝑇) & ⊢ (𝜑 → 𝐴 ∈ (𝑆 Cn 𝑇)) & ⊢ (𝜑 → 𝐵 ∈ (𝑅 Cn 𝑆)) & ⊢ (𝜑 → ((𝐴 ∘ 𝐵) “ 𝐾) ⊆ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝐴, 𝐵〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝐾) ⊆ 𝑉}))) | ||
| Theorem | xkococn 23596* | Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹 ∈ (((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) Cn (𝑇 ↑ko 𝑅))) | ||
| Theorem | cnmptid 23597* | The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | cnmptc 23598* | A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | cnmpt11 23599* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) & ⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) | ||
| Theorem | cnmpt11f 23600* | The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |