MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfil Structured version   Visualization version   GIF version

Theorem isfil 22998
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfil (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem isfil
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fil 22997 . 2 Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
2 pweq 4549 . . . 4 (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋)
32adantr 481 . . 3 ((𝑧 = 𝑋𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋)
4 ineq1 4139 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥))
54neeq1d 3003 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
6 eleq2 2827 . . . . 5 (𝑓 = 𝐹 → (𝑥𝑓𝑥𝐹))
75, 6imbi12d 345 . . . 4 (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
87adantl 482 . . 3 ((𝑧 = 𝑋𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
93, 8raleqbidv 3336 . 2 ((𝑧 = 𝑋𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
10 fveq2 6774 . 2 (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋))
11 fvex 6787 . 2 (fBas‘𝑧) ∈ V
12 elfvdm 6806 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
131, 9, 10, 11, 12elmptrab2 22979 1 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  c0 4256  𝒫 cpw 4533  dom cdm 5589  cfv 6433  fBascfbas 20585  Filcfil 22996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-fil 22997
This theorem is referenced by:  filfbas  22999  filss  23004  isfil2  23007  ustfilxp  23364
  Copyright terms: Public domain W3C validator