MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfil Structured version   Visualization version   GIF version

Theorem isfil 22452
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfil (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem isfil
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fil 22451 . 2 Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
2 pweq 4513 . . . 4 (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋)
32adantr 484 . . 3 ((𝑧 = 𝑋𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋)
4 ineq1 4131 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥))
54neeq1d 3046 . . . . 5 (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅))
6 eleq2 2878 . . . . 5 (𝑓 = 𝐹 → (𝑥𝑓𝑥𝐹))
75, 6imbi12d 348 . . . 4 (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
87adantl 485 . . 3 ((𝑧 = 𝑋𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
93, 8raleqbidv 3354 . 2 ((𝑧 = 𝑋𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
10 fveq2 6645 . 2 (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋))
11 fvex 6658 . 2 (fBas‘𝑧) ∈ V
12 elfvdm 6677 . 2 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
131, 9, 10, 11, 12elmptrab2 22433 1 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  c0 4243  𝒫 cpw 4497  dom cdm 5519  cfv 6324  fBascfbas 20079  Filcfil 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-fil 22451
This theorem is referenced by:  filfbas  22453  filss  22458  isfil2  22461  ustfilxp  22818
  Copyright terms: Public domain W3C validator