![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfil | Structured version Visualization version GIF version |
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
isfil | ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fil 23572 | . 2 ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) | |
2 | pweq 4617 | . . . 4 ⊢ (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋) | |
3 | 2 | adantr 479 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋) |
4 | ineq1 4206 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
5 | 4 | neeq1d 2998 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
6 | eleq2 2820 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝑓 ↔ 𝑥 ∈ 𝐹)) | |
7 | 5, 6 | imbi12d 343 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
8 | 7 | adantl 480 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
9 | 3, 8 | raleqbidv 3340 | . 2 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
10 | fveq2 6892 | . 2 ⊢ (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋)) | |
11 | fvex 6905 | . 2 ⊢ (fBas‘𝑧) ∈ V | |
12 | elfvdm 6929 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
13 | 1, 9, 10, 11, 12 | elmptrab2 23554 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∩ cin 3948 ∅c0 4323 𝒫 cpw 4603 dom cdm 5677 ‘cfv 6544 fBascfbas 21134 Filcfil 23571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-fil 23572 |
This theorem is referenced by: filfbas 23574 filss 23579 isfil2 23582 ustfilxp 23939 |
Copyright terms: Public domain | W3C validator |