![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfil | Structured version Visualization version GIF version |
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
isfil | ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fil 23768 | . 2 ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) | |
2 | pweq 4618 | . . . 4 ⊢ (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋) | |
3 | 2 | adantr 479 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋) |
4 | ineq1 4205 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
5 | 4 | neeq1d 2996 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
6 | eleq2 2817 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝑓 ↔ 𝑥 ∈ 𝐹)) | |
7 | 5, 6 | imbi12d 343 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
8 | 7 | adantl 480 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
9 | 3, 8 | raleqbidv 3338 | . 2 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
10 | fveq2 6900 | . 2 ⊢ (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋)) | |
11 | fvex 6913 | . 2 ⊢ (fBas‘𝑧) ∈ V | |
12 | elfvdm 6937 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
13 | 1, 9, 10, 11, 12 | elmptrab2 23750 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∀wral 3057 ∩ cin 3946 ∅c0 4324 𝒫 cpw 4604 dom cdm 5680 ‘cfv 6551 fBascfbas 21272 Filcfil 23767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fv 6559 df-fil 23768 |
This theorem is referenced by: filfbas 23770 filss 23775 isfil2 23778 ustfilxp 24135 |
Copyright terms: Public domain | W3C validator |