| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfil | Structured version Visualization version GIF version | ||
| Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| isfil | ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fil 23782 | . 2 ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) | |
| 2 | pweq 4589 | . . . 4 ⊢ (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋) |
| 4 | ineq1 4188 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
| 5 | 4 | neeq1d 2991 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
| 6 | eleq2 2823 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝑓 ↔ 𝑥 ∈ 𝐹)) | |
| 7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
| 9 | 3, 8 | raleqbidv 3325 | . 2 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
| 10 | fveq2 6875 | . 2 ⊢ (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋)) | |
| 11 | fvex 6888 | . 2 ⊢ (fBas‘𝑧) ∈ V | |
| 12 | elfvdm 6912 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
| 13 | 1, 9, 10, 11, 12 | elmptrab2 23764 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∩ cin 3925 ∅c0 4308 𝒫 cpw 4575 dom cdm 5654 ‘cfv 6530 fBascfbas 21301 Filcfil 23781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-fil 23782 |
| This theorem is referenced by: filfbas 23784 filss 23789 isfil2 23792 ustfilxp 24149 |
| Copyright terms: Public domain | W3C validator |