![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfil | Structured version Visualization version GIF version |
Description: The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
isfil | ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fil 23879 | . 2 ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) | |
2 | pweq 4622 | . . . 4 ⊢ (𝑧 = 𝑋 → 𝒫 𝑧 = 𝒫 𝑋) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → 𝒫 𝑧 = 𝒫 𝑋) |
4 | ineq1 4224 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∩ 𝒫 𝑥) = (𝐹 ∩ 𝒫 𝑥)) | |
5 | 4 | neeq1d 3000 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 ∩ 𝒫 𝑥) ≠ ∅ ↔ (𝐹 ∩ 𝒫 𝑥) ≠ ∅)) |
6 | eleq2 2830 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑥 ∈ 𝑓 ↔ 𝑥 ∈ 𝐹)) | |
7 | 5, 6 | imbi12d 344 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
9 | 3, 8 | raleqbidv 3346 | . 2 ⊢ ((𝑧 = 𝑋 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓) ↔ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
10 | fveq2 6914 | . 2 ⊢ (𝑧 = 𝑋 → (fBas‘𝑧) = (fBas‘𝑋)) | |
11 | fvex 6927 | . 2 ⊢ (fBas‘𝑧) ∈ V | |
12 | elfvdm 6951 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
13 | 1, 9, 10, 11, 12 | elmptrab2 23861 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∩ cin 3965 ∅c0 4342 𝒫 cpw 4608 dom cdm 5693 ‘cfv 6569 fBascfbas 21379 Filcfil 23878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-fil 23879 |
This theorem is referenced by: filfbas 23881 filss 23886 isfil2 23889 ustfilxp 24246 |
Copyright terms: Public domain | W3C validator |