| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filunirn | Structured version Visualization version GIF version | ||
| Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| filunirn | ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . . . . . 6 ⊢ (fBas‘𝑦) ∈ V | |
| 2 | 1 | rabex 5314 | . . . . 5 ⊢ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧 ∈ 𝑤)} ∈ V |
| 3 | df-fil 23789 | . . . . 5 ⊢ Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧 ∈ 𝑤)}) | |
| 4 | 2, 3 | fnmpti 6686 | . . . 4 ⊢ Fil Fn V |
| 5 | fnunirn 7251 | . . . 4 ⊢ (Fil Fn V → (𝐹 ∈ ∪ ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)) |
| 7 | filunibas 23824 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑥) → ∪ 𝐹 = 𝑥) | |
| 8 | 7 | fveq2d 6885 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑥) → (Fil‘∪ 𝐹) = (Fil‘𝑥)) |
| 9 | 8 | eleq2d 2821 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘∪ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥))) |
| 10 | 9 | ibir 268 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 11 | 10 | rexlimivw 3138 | . . 3 ⊢ (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 12 | 6, 11 | sylbi 217 | . 2 ⊢ (𝐹 ∈ ∪ ran Fil → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 13 | fvssunirn 6914 | . . 3 ⊢ (Fil‘∪ 𝐹) ⊆ ∪ ran Fil | |
| 14 | 13 | sseli 3959 | . 2 ⊢ (𝐹 ∈ (Fil‘∪ 𝐹) → 𝐹 ∈ ∪ ran Fil) |
| 15 | 12, 14 | impbii 209 | 1 ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 Vcvv 3464 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ran crn 5660 Fn wfn 6531 ‘cfv 6536 fBascfbas 21308 Filcfil 23788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-fbas 21317 df-fil 23789 |
| This theorem is referenced by: flimfil 23912 isfcls 23952 |
| Copyright terms: Public domain | W3C validator |