MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunirn Structured version   Visualization version   GIF version

Theorem filunirn 22941
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunirn (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))

Proof of Theorem filunirn
Dummy variables 𝑦 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . . . . . 6 (fBas‘𝑦) ∈ V
21rabex 5251 . . . . 5 {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)} ∈ V
3 df-fil 22905 . . . . 5 Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)})
42, 3fnmpti 6560 . . . 4 Fil Fn V
5 fnunirn 7108 . . . 4 (Fil Fn V → (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))
7 filunibas 22940 . . . . . . 7 (𝐹 ∈ (Fil‘𝑥) → 𝐹 = 𝑥)
87fveq2d 6760 . . . . . 6 (𝐹 ∈ (Fil‘𝑥) → (Fil‘ 𝐹) = (Fil‘𝑥))
98eleq2d 2824 . . . . 5 (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥)))
109ibir 267 . . . 4 (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
1110rexlimivw 3210 . . 3 (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
126, 11sylbi 216 . 2 (𝐹 ran Fil → 𝐹 ∈ (Fil‘ 𝐹))
13 fvssunirn 6785 . . 3 (Fil‘ 𝐹) ⊆ ran Fil
1413sseli 3913 . 2 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ran Fil)
1512, 14impbii 208 1 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  c0 4253  𝒫 cpw 4530   cuni 4836  ran crn 5581   Fn wfn 6413  cfv 6418  fBascfbas 20498  Filcfil 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-fbas 20507  df-fil 22905
This theorem is referenced by:  flimfil  23028  isfcls  23068
  Copyright terms: Public domain W3C validator