MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunirn Structured version   Visualization version   GIF version

Theorem filunirn 23906
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunirn (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))

Proof of Theorem filunirn
Dummy variables 𝑦 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6920 . . . . . 6 (fBas‘𝑦) ∈ V
21rabex 5345 . . . . 5 {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)} ∈ V
3 df-fil 23870 . . . . 5 Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)})
42, 3fnmpti 6712 . . . 4 Fil Fn V
5 fnunirn 7274 . . . 4 (Fil Fn V → (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))
7 filunibas 23905 . . . . . . 7 (𝐹 ∈ (Fil‘𝑥) → 𝐹 = 𝑥)
87fveq2d 6911 . . . . . 6 (𝐹 ∈ (Fil‘𝑥) → (Fil‘ 𝐹) = (Fil‘𝑥))
98eleq2d 2825 . . . . 5 (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥)))
109ibir 268 . . . 4 (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
1110rexlimivw 3149 . . 3 (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
126, 11sylbi 217 . 2 (𝐹 ran Fil → 𝐹 ∈ (Fil‘ 𝐹))
13 fvssunirn 6940 . . 3 (Fil‘ 𝐹) ⊆ ran Fil
1413sseli 3991 . 2 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ran Fil)
1512, 14impbii 209 1 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  c0 4339  𝒫 cpw 4605   cuni 4912  ran crn 5690   Fn wfn 6558  cfv 6563  fBascfbas 21370  Filcfil 23869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-fbas 21379  df-fil 23870
This theorem is referenced by:  flimfil  23993  isfcls  24033
  Copyright terms: Public domain W3C validator