MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunirn Structured version   Visualization version   GIF version

Theorem filunirn 23790
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunirn (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))

Proof of Theorem filunirn
Dummy variables 𝑦 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6830 . . . . . 6 (fBas‘𝑦) ∈ V
21rabex 5275 . . . . 5 {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)} ∈ V
3 df-fil 23754 . . . . 5 Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)})
42, 3fnmpti 6620 . . . 4 Fil Fn V
5 fnunirn 7182 . . . 4 (Fil Fn V → (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))
7 filunibas 23789 . . . . . . 7 (𝐹 ∈ (Fil‘𝑥) → 𝐹 = 𝑥)
87fveq2d 6821 . . . . . 6 (𝐹 ∈ (Fil‘𝑥) → (Fil‘ 𝐹) = (Fil‘𝑥))
98eleq2d 2815 . . . . 5 (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥)))
109ibir 268 . . . 4 (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
1110rexlimivw 3127 . . 3 (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
126, 11sylbi 217 . 2 (𝐹 ran Fil → 𝐹 ∈ (Fil‘ 𝐹))
13 fvssunirn 6848 . . 3 (Fil‘ 𝐹) ⊆ ran Fil
1413sseli 3928 . 2 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ran Fil)
1512, 14impbii 209 1 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  cin 3899  c0 4281  𝒫 cpw 4548   cuni 4857  ran crn 5615   Fn wfn 6472  cfv 6477  fBascfbas 21272  Filcfil 23753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-fv 6485  df-fbas 21281  df-fil 23754
This theorem is referenced by:  flimfil  23877  isfcls  23917
  Copyright terms: Public domain W3C validator