MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunirn Structured version   Visualization version   GIF version

Theorem filunirn 23825
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunirn (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))

Proof of Theorem filunirn
Dummy variables 𝑦 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6894 . . . . . 6 (fBas‘𝑦) ∈ V
21rabex 5314 . . . . 5 {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)} ∈ V
3 df-fil 23789 . . . . 5 Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧𝑤)})
42, 3fnmpti 6686 . . . 4 Fil Fn V
5 fnunirn 7251 . . . 4 (Fil Fn V → (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐹 ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))
7 filunibas 23824 . . . . . . 7 (𝐹 ∈ (Fil‘𝑥) → 𝐹 = 𝑥)
87fveq2d 6885 . . . . . 6 (𝐹 ∈ (Fil‘𝑥) → (Fil‘ 𝐹) = (Fil‘𝑥))
98eleq2d 2821 . . . . 5 (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥)))
109ibir 268 . . . 4 (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
1110rexlimivw 3138 . . 3 (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘ 𝐹))
126, 11sylbi 217 . 2 (𝐹 ran Fil → 𝐹 ∈ (Fil‘ 𝐹))
13 fvssunirn 6914 . . 3 (Fil‘ 𝐹) ⊆ ran Fil
1413sseli 3959 . 2 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ran Fil)
1512, 14impbii 209 1 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cin 3930  c0 4313  𝒫 cpw 4580   cuni 4888  ran crn 5660   Fn wfn 6531  cfv 6536  fBascfbas 21308  Filcfil 23788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-fbas 21317  df-fil 23789
This theorem is referenced by:  flimfil  23912  isfcls  23952
  Copyright terms: Public domain W3C validator