| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filunirn | Structured version Visualization version GIF version | ||
| Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| filunirn | ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . . . . 6 ⊢ (fBas‘𝑦) ∈ V | |
| 2 | 1 | rabex 5279 | . . . . 5 ⊢ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧 ∈ 𝑤)} ∈ V |
| 3 | df-fil 23767 | . . . . 5 ⊢ Fil = (𝑦 ∈ V ↦ {𝑤 ∈ (fBas‘𝑦) ∣ ∀𝑧 ∈ 𝒫 𝑦((𝑤 ∩ 𝒫 𝑧) ≠ ∅ → 𝑧 ∈ 𝑤)}) | |
| 4 | 2, 3 | fnmpti 6630 | . . . 4 ⊢ Fil Fn V |
| 5 | fnunirn 7193 | . . . 4 ⊢ (Fil Fn V → (𝐹 ∈ ∪ ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ ∪ ran Fil ↔ ∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥)) |
| 7 | filunibas 23802 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑥) → ∪ 𝐹 = 𝑥) | |
| 8 | 7 | fveq2d 6832 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑥) → (Fil‘∪ 𝐹) = (Fil‘𝑥)) |
| 9 | 8 | eleq2d 2817 | . . . . 5 ⊢ (𝐹 ∈ (Fil‘𝑥) → (𝐹 ∈ (Fil‘∪ 𝐹) ↔ 𝐹 ∈ (Fil‘𝑥))) |
| 10 | 9 | ibir 268 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 11 | 10 | rexlimivw 3129 | . . 3 ⊢ (∃𝑥 ∈ V 𝐹 ∈ (Fil‘𝑥) → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 12 | 6, 11 | sylbi 217 | . 2 ⊢ (𝐹 ∈ ∪ ran Fil → 𝐹 ∈ (Fil‘∪ 𝐹)) |
| 13 | fvssunirn 6859 | . . 3 ⊢ (Fil‘∪ 𝐹) ⊆ ∪ ran Fil | |
| 14 | 13 | sseli 3925 | . 2 ⊢ (𝐹 ∈ (Fil‘∪ 𝐹) → 𝐹 ∈ ∪ ran Fil) |
| 15 | 12, 14 | impbii 209 | 1 ⊢ (𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ (Fil‘∪ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∩ cin 3896 ∅c0 4282 𝒫 cpw 4549 ∪ cuni 4858 ran crn 5620 Fn wfn 6482 ‘cfv 6487 fBascfbas 21285 Filcfil 23766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-fv 6495 df-fbas 21294 df-fil 23767 |
| This theorem is referenced by: flimfil 23890 isfcls 23930 |
| Copyright terms: Public domain | W3C validator |