Detailed syntax breakdown of Definition df-fin2
Step | Hyp | Ref
| Expression |
1 | | cfin2 10035 |
. 2
class
FinII |
2 | | vy |
. . . . . . . 8
setvar 𝑦 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑦 |
4 | | c0 4256 |
. . . . . . 7
class
∅ |
5 | 3, 4 | wne 2943 |
. . . . . 6
wff 𝑦 ≠ ∅ |
6 | | crpss 7575 |
. . . . . . 7
class
[⊊] |
7 | 3, 6 | wor 5502 |
. . . . . 6
wff
[⊊] Or 𝑦 |
8 | 5, 7 | wa 396 |
. . . . 5
wff (𝑦 ≠ ∅ ∧
[⊊] Or 𝑦) |
9 | 3 | cuni 4839 |
. . . . . 6
class ∪ 𝑦 |
10 | 9, 3 | wcel 2106 |
. . . . 5
wff ∪ 𝑦
∈ 𝑦 |
11 | 8, 10 | wi 4 |
. . . 4
wff ((𝑦 ≠ ∅ ∧
[⊊] Or 𝑦)
→ ∪ 𝑦 ∈ 𝑦) |
12 | | vx |
. . . . . . 7
setvar 𝑥 |
13 | 12 | cv 1538 |
. . . . . 6
class 𝑥 |
14 | 13 | cpw 4533 |
. . . . 5
class 𝒫
𝑥 |
15 | 14 | cpw 4533 |
. . . 4
class 𝒫
𝒫 𝑥 |
16 | 11, 2, 15 | wral 3064 |
. . 3
wff
∀𝑦 ∈
𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦) |
17 | 16, 12 | cab 2715 |
. 2
class {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫
𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} |
18 | 1, 17 | wceq 1539 |
1
wff
FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} |