Detailed syntax breakdown of Definition df-fin2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cfin2 10320 | . 2
class
FinII | 
| 2 |  | vy | . . . . . . . 8
setvar 𝑦 | 
| 3 | 2 | cv 1538 | . . . . . . 7
class 𝑦 | 
| 4 |  | c0 4332 | . . . . . . 7
class
∅ | 
| 5 | 3, 4 | wne 2939 | . . . . . 6
wff 𝑦 ≠ ∅ | 
| 6 |  | crpss 7743 | . . . . . . 7
class 
[⊊] | 
| 7 | 3, 6 | wor 5590 | . . . . . 6
wff 
[⊊] Or 𝑦 | 
| 8 | 5, 7 | wa 395 | . . . . 5
wff (𝑦 ≠ ∅ ∧
[⊊] Or 𝑦) | 
| 9 | 3 | cuni 4906 | . . . . . 6
class ∪ 𝑦 | 
| 10 | 9, 3 | wcel 2107 | . . . . 5
wff ∪ 𝑦
∈ 𝑦 | 
| 11 | 8, 10 | wi 4 | . . . 4
wff ((𝑦 ≠ ∅ ∧
[⊊] Or 𝑦)
→ ∪ 𝑦 ∈ 𝑦) | 
| 12 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 13 | 12 | cv 1538 | . . . . . 6
class 𝑥 | 
| 14 | 13 | cpw 4599 | . . . . 5
class 𝒫
𝑥 | 
| 15 | 14 | cpw 4599 | . . . 4
class 𝒫
𝒫 𝑥 | 
| 16 | 11, 2, 15 | wral 3060 | . . 3
wff
∀𝑦 ∈
𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦) | 
| 17 | 16, 12 | cab 2713 | . 2
class {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫
𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} | 
| 18 | 1, 17 | wceq 1539 | 1
wff
FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} |