![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin2 | Structured version Visualization version GIF version |
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4636 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | pweqd 4639 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴) |
3 | 2 | raleqdv 3334 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
4 | df-fin2 10355 | . 2 ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)} | |
5 | 3, 4 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 Or wor 5606 [⊊] crpss 7757 FinIIcfin2 10348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-pw 4624 df-fin2 10355 |
This theorem is referenced by: fin2i 10364 isfin2-2 10388 ssfin2 10389 enfin2i 10390 fin12 10482 fin1a2s 10483 |
Copyright terms: Public domain | W3C validator |