| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin2 | Structured version Visualization version GIF version | ||
| Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4580 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | pweqd 4583 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴) |
| 3 | 2 | raleqdv 3301 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
| 4 | df-fin2 10246 | . 2 ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)} | |
| 5 | 3, 4 | elab2g 3650 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 Or wor 5548 [⊊] crpss 7701 FinIIcfin2 10239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-pw 4568 df-fin2 10246 |
| This theorem is referenced by: fin2i 10255 isfin2-2 10279 ssfin2 10280 enfin2i 10281 fin12 10373 fin1a2s 10374 |
| Copyright terms: Public domain | W3C validator |