MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2 Structured version   Visualization version   GIF version

Theorem isfin2 10254
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin2 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4580 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21pweqd 4583 . . 3 (𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴)
32raleqdv 3301 . 2 (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦) ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
4 df-fin2 10246 . 2 FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)}
53, 4elab2g 3650 1 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  c0 4299  𝒫 cpw 4566   cuni 4874   Or wor 5548   [] crpss 7701  FinIIcfin2 10239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3934  df-pw 4568  df-fin2 10246
This theorem is referenced by:  fin2i  10255  isfin2-2  10279  ssfin2  10280  enfin2i  10281  fin12  10373  fin1a2s  10374
  Copyright terms: Public domain W3C validator