Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin2 | Structured version Visualization version GIF version |
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4554 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | pweqd 4557 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴) |
3 | 2 | raleqdv 3346 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
4 | df-fin2 10026 | . 2 ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)} | |
5 | 3, 4 | elab2g 3612 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∅c0 4261 𝒫 cpw 4538 ∪ cuni 4844 Or wor 5501 [⊊] crpss 7566 FinIIcfin2 10019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-in 3898 df-ss 3908 df-pw 4540 df-fin2 10026 |
This theorem is referenced by: fin2i 10035 isfin2-2 10059 ssfin2 10060 enfin2i 10061 fin12 10153 fin1a2s 10154 |
Copyright terms: Public domain | W3C validator |