![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin2 | Structured version Visualization version GIF version |
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4617 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | pweqd 4620 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴) |
3 | 2 | raleqdv 3326 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
4 | df-fin2 10281 | . 2 ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)} | |
5 | 3, 4 | elab2g 3671 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∅c0 4323 𝒫 cpw 4603 ∪ cuni 4909 Or wor 5588 [⊊] crpss 7712 FinIIcfin2 10274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-fin2 10281 |
This theorem is referenced by: fin2i 10290 isfin2-2 10314 ssfin2 10315 enfin2i 10316 fin12 10408 fin1a2s 10409 |
Copyright terms: Public domain | W3C validator |