![]() |
Metamath
Proof Explorer Theorem List (p. 104 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28329) |
![]() (28330-29854) |
![]() (29855-43446) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | axpre-lttri 10301 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri 10427. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri 10325. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Theorem | axpre-lttrn 10302 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn 10428. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 10326. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Theorem | axpre-ltadd 10303 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd 10429. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 10327. (Contributed by NM, 11-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Theorem | axpre-mulgt0 10304 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 10430. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 10328. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Theorem | axpre-sup 10305* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 10431. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 10329. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Theorem | wuncn 10306 | A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ℂ ∈ 𝑈) | ||
Axiom | ax-cnex 10307 | The complex numbers form a set. This axiom is redundant - see cnexALT 12107- but we provide this axiom because the justification theorem axcnex 10283 does not use ax-rep 4993 even though the redundancy proof does. Proofs should normally use cnex 10332 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
⊢ ℂ ∈ V | ||
Axiom | ax-resscn 10308 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, justified by theorem axresscn 10284. (Contributed by NM, 1-Mar-1995.) |
⊢ ℝ ⊆ ℂ | ||
Axiom | ax-1cn 10309 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, justified by theorem ax1cn 10285. (Contributed by NM, 1-Mar-1995.) |
⊢ 1 ∈ ℂ | ||
Axiom | ax-icn 10310 | i is a complex number. Axiom 3 of 22 for real and complex numbers, justified by theorem axicn 10286. (Contributed by NM, 1-Mar-1995.) |
⊢ i ∈ ℂ | ||
Axiom | ax-addcl 10311 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, justified by theorem axaddcl 10287. Proofs should normally use addcl 10333 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Axiom | ax-addrcl 10312 | Closure law for addition in the real subfield of complex numbers. Axiom 6 of 23 for real and complex numbers, justified by theorem axaddrcl 10288. Proofs should normally use readdcl 10334 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Axiom | ax-mulcl 10313 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by theorem axmulcl 10289. Proofs should normally use mulcl 10335 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Axiom | ax-mulrcl 10314 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, justified by theorem axmulrcl 10290. Proofs should normally use remulcl 10336 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Axiom | ax-mulcom 10315 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by theorem axmulcom 10291. Proofs should normally use mulcom 10337 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Axiom | ax-addass 10316 | Addition of complex numbers is associative. Axiom 9 of 22 for real and complex numbers, justified by theorem axaddass 10292. Proofs should normally use addass 10338 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Axiom | ax-mulass 10317 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, justified by theorem axmulass 10293. Proofs should normally use mulass 10339 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Axiom | ax-distr 10318 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by theorem axdistr 10294. Proofs should normally use adddi 10340 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Axiom | ax-i2m1 10319 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by theorem axi2m1 10295. (Contributed by NM, 29-Jan-1995.) |
⊢ ((i · i) + 1) = 0 | ||
Axiom | ax-1ne0 10320 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, justified by theorem ax1ne0 10296. (Contributed by NM, 29-Jan-1995.) |
⊢ 1 ≠ 0 | ||
Axiom | ax-1rid 10321 | 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by theorem ax1rid 10297. Weakened from the original axiom in the form of statement in mulid1 10353, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | ||
Axiom | ax-rnegex 10322* | Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by theorem axrnegex 10298. (Contributed by Eric Schmidt, 21-May-2007.) |
⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) | ||
Axiom | ax-rrecex 10323* | Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by theorem axrrecex 10299. (Contributed by Eric Schmidt, 11-Apr-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
Axiom | ax-cnre 10324* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom 17 of 22 for real and complex numbers, justified by theorem axcnre 10300. For naming consistency, use cnre 10352 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Axiom | ax-pre-lttri 10325 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by theorem axpre-lttri 10301. Note: The more general version for extended reals is axlttri 10427. Normally new proofs would use xrlttri 12257. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
Axiom | ax-pre-lttrn 10326 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by theorem axpre-lttrn 10302. Note: The more general version for extended reals is axlttrn 10428. Normally new proofs would use lttr 10432. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
Axiom | ax-pre-ltadd 10327 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by theorem axpre-ltadd 10303. Normally new proofs would use axltadd 10429. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
Axiom | ax-pre-mulgt0 10328 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by theorem axpre-mulgt0 10304. Normally new proofs would use axmulgt0 10430. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
Axiom | ax-pre-sup 10329* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by theorem axpre-sup 10305. Note: Normally new proofs would use axsup 10431. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
Axiom | ax-addf 10330 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
http://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 10333 should be used. Note that uses of ax-addf 10330 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by theorem axaddf 10281. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Axiom | ax-mulf 10331 |
Multiplication is an operation on the complex numbers. This deprecated
axiom is provided for historical compatibility but is not a bona fide
axiom for complex numbers (independent of set theory) since it cannot be
interpreted as a first- or second-order statement (see
http://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific ax-mulcl 10313 should be used. Note that uses of ax-mulf 10331
can be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 ·
𝑦)) in place of
·, from which
this axiom (with the defined operation in place of ·) follows as a
theorem.
This axiom is justified by theorem axmulf 10282. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | cnex 10332 | Alias for ax-cnex 10307. See also cnexALT 12107. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ℂ ∈ V | ||
Theorem | addcl 10333 | Alias for ax-addcl 10311, for naming consistency with addcli 10362. Use this theorem instead of ax-addcl 10311 or axaddcl 10287. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | readdcl 10334 | Alias for ax-addrcl 10312, for naming consistency with readdcli 10371. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | mulcl 10335 | Alias for ax-mulcl 10313, for naming consistency with mulcli 10363. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | remulcl 10336 | Alias for ax-mulrcl 10314, for naming consistency with remulcli 10372. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | mulcom 10337 | Alias for ax-mulcom 10315, for naming consistency with mulcomi 10364. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | addass 10338 | Alias for ax-addass 10316, for naming consistency with addassi 10366. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | mulass 10339 | Alias for ax-mulass 10317, for naming consistency with mulassi 10367. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | adddi 10340 | Alias for ax-distr 10318, for naming consistency with adddii 10368. (Contributed by NM, 10-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | recn 10341 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
Theorem | reex 10342 | The real numbers form a set. See also reexALT 12105. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ℝ ∈ V | ||
Theorem | reelprrecn 10343 | Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ℝ ∈ {ℝ, ℂ} | ||
Theorem | cnelprrecn 10344 | Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ℂ ∈ {ℝ, ℂ} | ||
Theorem | elimne0 10345 | Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 | ||
Theorem | adddir 10346 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
Theorem | 0cn 10347 | Zero is a complex number. See also 0cnALT 10588. (Contributed by NM, 19-Feb-2005.) |
⊢ 0 ∈ ℂ | ||
Theorem | 0cnd 10348 | Zero is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℂ) | ||
Theorem | c0ex 10349 | Zero is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 0 ∈ V | ||
Theorem | 1cnd 10350 | One is a complex number, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℂ) | ||
Theorem | 1ex 10351 | One is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 1 ∈ V | ||
Theorem | cnre 10352* | Alias for ax-cnre 10324, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
Theorem | mulid1 10353 | The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
Theorem | mulid2 10354 | Identity law for multiplication. See mulid1 10353 for commuted version. (Contributed by NM, 8-Oct-1999.) |
⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
Theorem | 1re 10355 | The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn 10309, by exploiting properties of the imaginary unit i. (Contributed by Eric Schmidt, 11-Apr-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
⊢ 1 ∈ ℝ | ||
Theorem | 1red 10356 | The number 1 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℝ) | ||
Theorem | 0re 10357 | The number 0 is real. Remark: the first step could also be ax-icn 10310. See also 0reALT 10698. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022.) |
⊢ 0 ∈ ℝ | ||
Theorem | 0reOLD 10358 | Obsolete version of 0re 10357 as of 11-Oct-2022. The number 0 is real. See also 0reALT 10698. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 0 ∈ ℝ | ||
Theorem | 0red 10359 | The number 0 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℝ) | ||
Theorem | mulid1i 10360 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
Theorem | mulid2i 10361 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
Theorem | addcli 10362 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
Theorem | mulcli 10363 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
Theorem | mulcomi 10364 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
Theorem | mulcomli 10365 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
Theorem | addassi 10366 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
Theorem | mulassi 10367 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
Theorem | adddii 10368 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
Theorem | adddiri 10369 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
Theorem | recni 10370 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
Theorem | readdcli 10371 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
Theorem | remulcli 10372 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
Theorem | mulid1d 10373 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
Theorem | mulid2d 10374 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
Theorem | addcld 10375 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | mulcld 10376 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | mulcomd 10377 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | addassd 10378 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | mulassd 10379 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | adddid 10380 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | adddird 10381 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
Theorem | adddirp1d 10382 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
Theorem | joinlmuladdmuld 10383 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
Theorem | recnd 10384 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | readdcld 10385 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | remulcld 10386 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
Syntax | cpnf 10387 | Plus infinity. |
class +∞ | ||
Syntax | cmnf 10388 | Minus infinity. |
class -∞ | ||
Syntax | cxr 10389 | The set of extended reals (includes plus and minus infinity). |
class ℝ* | ||
Syntax | clt 10390 | 'Less than' predicate (extended to include the extended reals). |
class < | ||
Syntax | cle 10391 | Extend wff notation to include the 'less than or equal to' relation. |
class ≤ | ||
Definition | df-pnf 10392 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 10393). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 10397,
mnfnre 10398, and pnfnemnf 10411.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ +∞ = 𝒫 ∪ ℂ | ||
Definition | df-mnf 10393 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 10398 and pnfnemnf 10411). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
⊢ -∞ = 𝒫 +∞ | ||
Definition | df-xr 10394 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
Definition | df-ltxr 10395* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
Definition | df-le 10396 | Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 10442 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.) |
⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
Theorem | pnfnre 10397 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ +∞ ∉ ℝ | ||
Theorem | mnfnre 10398 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
⊢ -∞ ∉ ℝ | ||
Theorem | ressxr 10399 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
⊢ ℝ ⊆ ℝ* | ||
Theorem | rexpssxrxp 10400 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |