HomeHome Metamath Proof Explorer
Theorem List (p. 104 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 10301-10400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzfcndrep 10301* Axiom of Replacement ax-rep 5205, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
 
Theoremzfcndun 10302* Axiom of Union ax-un 7566, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
 
Theoremzfcndpow 10303* Axiom of Power Sets ax-pow 5283, reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru 5288. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
 
Theoremzfcndreg 10304* Axiom of Regularity ax-reg 9281, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
 
Theoremzfcndinf 10305* Axiom of Infinity ax-inf 9326, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing Theorem el 5287 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
 
Theoremzfcndac 10306* Axiom of Choice ax-ac 10146, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
 
3.4  The Generalized Continuum Hypothesis
 
3.4.1  Sets satisfying the Generalized Continuum Hypothesis
 
Syntaxcgch 10307 Extend class notation to include the collection of sets that satisfy the GCH.
class GCH
 
Definitiondf-gch 10308* Define the collection of "GCH-sets", or sets for which the generalized continuum hypothesis holds. In this language the generalized continuum hypothesis can be expressed as GCH = V. A set 𝑥 satisfies the generalized continuum hypothesis if it is finite or there is no set 𝑦 strictly between 𝑥 and its powerset in cardinality. The continuum hypothesis is equivalent to ω ∈ GCH. (Contributed by Mario Carneiro, 15-May-2015.)
GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
 
Theoremelgch 10309* Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
(𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
 
Theoremfingch 10310 A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Fin ⊆ GCH
 
Theoremgchi 10311 The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
 
Theoremgchen1 10312 If 𝐴𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
(((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
 
Theoremgchen2 10313 If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
(((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴)
 
Theoremgchor 10314 If 𝐴𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
(((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))
 
Theoremengch 10315 The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
(𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
 
Theoremgchdomtri 10316 Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10368. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴 ∈ GCH ∧ (𝐴𝐴) ≈ 𝐴𝐵 ≼ 𝒫 𝐴) → (𝐴𝐵𝐵𝐴))
 
Theoremfpwwe2cbv 10317* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 3-Jun-2015.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}       𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
 
Theoremfpwwe2lem1 10318* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 15-May-2015.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}       𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴))
 
Theoremfpwwe2lem2 10319* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)       (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
 
Theoremfpwwe2lem3 10320* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   (𝜑𝑋𝑊𝑅)       ((𝜑𝐵𝑋) → ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵)
 
Theoremfpwwe2lem4 10321* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)       ((𝜑 ∧ (𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴)
 
Theoremfpwwe2lem5 10322* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   (𝜑𝑋𝑊𝑅)    &   (𝜑𝑌𝑊𝑆)    &   𝑀 = OrdIso(𝑅, 𝑋)    &   𝑁 = OrdIso(𝑆, 𝑌)    &   (𝜑𝐵 ∈ dom 𝑀)    &   (𝜑𝐵 ∈ dom 𝑁)    &   (𝜑 → (𝑀𝐵) = (𝑁𝐵))       ((𝜑𝐶𝑅(𝑀𝐵)) → (𝐶𝑋𝐶𝑌 ∧ (𝑀𝐶) = (𝑁𝐶)))
 
Theoremfpwwe2lem6 10323* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   (𝜑𝑋𝑊𝑅)    &   (𝜑𝑌𝑊𝑆)    &   𝑀 = OrdIso(𝑅, 𝑋)    &   𝑁 = OrdIso(𝑆, 𝑌)    &   (𝜑𝐵 ∈ dom 𝑀)    &   (𝜑𝐵 ∈ dom 𝑁)    &   (𝜑 → (𝑀𝐵) = (𝑁𝐵))       ((𝜑𝐶𝑅(𝑀𝐵)) → (𝐶𝑆(𝑁𝐵) ∧ (𝐷𝑅(𝑀𝐵) → (𝐶𝑅𝐷𝐶𝑆𝐷))))
 
Theoremfpwwe2lem7 10324* Lemma for fpwwe2 10330. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   (𝜑𝑋𝑊𝑅)    &   (𝜑𝑌𝑊𝑆)    &   𝑀 = OrdIso(𝑅, 𝑋)    &   𝑁 = OrdIso(𝑆, 𝑌)    &   (𝜑 → dom 𝑀 ⊆ dom 𝑁)       (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
 
Theoremfpwwe2lem8 10325* Lemma for fpwwe2 10330. Given two well-orders 𝑋, 𝑅 and 𝑌, 𝑆 of parts of 𝐴, one is an initial segment of the other. (The 𝑂𝑃 hypothesis is in order to break the symmetry of 𝑋 and 𝑌.) (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   (𝜑𝑋𝑊𝑅)    &   (𝜑𝑌𝑊𝑆)    &   𝑀 = OrdIso(𝑅, 𝑋)    &   𝑁 = OrdIso(𝑆, 𝑌)    &   (𝜑 → dom 𝑀 ⊆ dom 𝑁)       (𝜑 → (𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))))
 
Theoremfpwwe2lem9 10326* Lemma for fpwwe2 10330. Given two well-orders 𝑋, 𝑅 and 𝑌, 𝑆 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   (𝜑𝑋𝑊𝑅)    &   (𝜑𝑌𝑊𝑆)       (𝜑 → ((𝑋𝑌𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑆 = (𝑅 ∩ (𝑋 × 𝑌)))))
 
Theoremfpwwe2lem10 10327* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   𝑋 = dom 𝑊       (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
 
Theoremfpwwe2lem11 10328* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 18-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   𝑋 = dom 𝑊       (𝜑𝑋 ∈ dom 𝑊)
 
Theoremfpwwe2lem12 10329* Lemma for fpwwe2 10330. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   𝑋 = dom 𝑊       (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
 
Theoremfpwwe2 10330* Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9717. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)    &   𝑋 = dom 𝑊       (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
 
Theoremfpwwecbv 10331* Lemma for fpwwe 10333. (Contributed by Mario Carneiro, 15-May-2015.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}       𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (𝐹‘(𝑠 “ {𝑧})) = 𝑧))}
 
Theoremfpwwelem 10332* Lemma for fpwwe 10333. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}    &   (𝜑𝐴𝑉)       (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 (𝐹‘(𝑅 “ {𝑦})) = 𝑦))))
 
Theoremfpwwe 10333* Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 8866 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9717. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)    &   𝑋 = dom 𝑊       (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
 
Theoremcanth4 10334* An "effective" form of Cantor's theorem canth 7209. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}    &   𝐵 = dom 𝑊    &   𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})       ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
 
Theoremcanthnumlem 10335* Lemma for canthnum 10336. (Contributed by Mario Carneiro, 19-May-2015.)
𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}    &   𝐵 = dom 𝑊    &   𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})       (𝐴𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1𝐴)
 
Theoremcanthnum 10336 The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8866. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.)
(𝐴𝑉𝐴 ≺ (𝒫 𝐴 ∩ dom card))
 
Theoremcanthwelem 10337* Lemma for canthwe 10338. (Contributed by Mario Carneiro, 31-May-2015.)
𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}    &   𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}    &   𝐵 = dom 𝑊    &   𝐶 = ((𝑊𝐵) “ {(𝐵𝐹(𝑊𝐵))})       (𝐴𝑉 → ¬ 𝐹:𝑂1-1𝐴)
 
Theoremcanthwe 10338* The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 8866. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
𝑂 = {⟨𝑥, 𝑟⟩ ∣ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)}       (𝐴𝑉𝐴𝑂)
 
Theoremcanthp1lem1 10339 Lemma for canthp1 10341. (Contributed by Mario Carneiro, 18-May-2015.)
(1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
 
Theoremcanthp1lem2 10340* Lemma for canthp1 10341. (Contributed by Mario Carneiro, 18-May-2015.)
(𝜑 → 1o𝐴)    &   (𝜑𝐹:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))    &   (𝜑𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹𝐴)})–1-1-onto𝐴)    &   𝐻 = ((𝐺𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))    &   𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐻‘(𝑟 “ {𝑦})) = 𝑦))}    &   𝐵 = dom 𝑊        ¬ 𝜑
 
Theoremcanthp1 10341 A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
(1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
 
Theoremfinngch 10342 The exclusion of finite sets from consideration in df-gch 10308 is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015.)
((𝐴 ∈ Fin ∧ 1o𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴))
 
Theoremgchdju1 10343 An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.)
((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴)
 
Theoremgchinf 10344 An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015.)
((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴)
 
Theorempwfseqlem1 10345* Lemma for pwfseq 10351. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.)
(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))    &   ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)    &   𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})       ((𝜑𝜓) → 𝐷 ∈ ( 𝑛 ∈ ω (𝐴m 𝑛) ∖ 𝑛 ∈ ω (𝑥m 𝑛)))
 
Theorempwfseqlem2 10346* Lemma for pwfseq 10351. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.)
(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))    &   ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)    &   𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})    &   𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))       ((𝑌 ∈ Fin ∧ 𝑅𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌)))
 
Theorempwfseqlem3 10347* Lemma for pwfseq 10351. Using the construction 𝐷 from pwfseqlem1 10345, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.)
(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))    &   ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)    &   𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})    &   𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))       ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
 
Theorempwfseqlem4a 10348* Lemma for pwfseqlem4 10349. (Contributed by Mario Carneiro, 7-Jun-2016.)
(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))    &   ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)    &   𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})    &   𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))       ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
 
Theorempwfseqlem4 10349* Lemma for pwfseq 10351. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10347. Applying fpwwe2 10330 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.)
(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))    &   ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)    &   𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})    &   𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))    &   𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))}    &   𝑍 = dom 𝑊        ¬ 𝜑
 
Theorempwfseqlem5 10350* Lemma for pwfseq 10351. Although in some ways pwfseqlem4 10349 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection 𝐾 from the set of finite sequences on an infinite set 𝑥 to 𝑥. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 9714. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 9701. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9394), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 9705). (Contributed by Mario Carneiro, 31-May-2015.)

(𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))    &   (𝜑𝑋𝐴)    &   (𝜑𝐻:ω–1-1-onto𝑋)    &   (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))    &   (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))    &   𝑂 = OrdIso(𝑟, 𝑡)    &   𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)    &   𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)    &   𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})    &   𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)    &   𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)    &   𝐾 = ((𝑃𝐼) ∘ 𝑄)        ¬ 𝜑
 
Theorempwfseq 10351* The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
(ω ≼ 𝐴 → ¬ 𝒫 𝐴 𝑛 ∈ ω (𝐴m 𝑛))
 
Theorempwxpndom2 10352 The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.)
(ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
 
Theorempwxpndom 10353 The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
(ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
 
Theorempwdjundom 10354 The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.)
(ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
 
Theoremgchdjuidm 10355 An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴𝐴) ≈ 𝐴)
 
Theoremgchxpidm 10356 An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴)
 
Theoremgchpwdom 10357 A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
 
Theoremgchaleph 10358 If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.)
((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
 
Theoremgchaleph2 10359 If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.)
((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴))
 
Theoremhargch 10360 If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10366. (Contributed by Mario Carneiro, 2-Jun-2015.)
((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)
 
Theoremalephgch 10361 If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH)
 
Theoremgch2 10362 It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.)
(GCH = V ↔ ran ℵ ⊆ GCH)
 
Theoremgch3 10363 An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.)
(GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
 
Theoremgch-kn 10364* The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets", available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 10268 to the successor aleph using enen2 8854. (Contributed by NM, 1-Oct-2004.)
(𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2om (ℵ‘𝐴))))
 
3.4.2  Derivation of the Axiom of Choice
 
Theoremgchaclem 10365 Lemma for gchac 10368 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
(𝜑 → ω ≼ 𝐴)    &   (𝜑 → 𝒫 𝐶 ∈ GCH)    &   (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))       (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))
 
Theoremgchhar 10366 A "local" form of gchac 10368. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴)
 
Theoremgchacg 10367 A "local" form of gchac 10368. If 𝐴 and 𝒫 𝐴 are GCH-sets, then 𝒫 𝐴 is well-orderable. The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 15-May-2015.)
((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ dom card)
 
Theoremgchac 10368 The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.)
(GCH = V → CHOICE)
 
PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY

Here we introduce Tarski-Grothendieck (TG) set theory, named after mathematicians Alfred Tarski and Alexander Grothendieck. TG theory extends ZFC with the TG Axiom ax-groth 10510, which states that for every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics".

We first introduce the concept of inaccessibles, including weakly and strongly inaccessible cardinals (df-wina 10371 and df-ina 10372 respectively ), Tarski classes (df-tsk 10436), and Grothendieck universes (df-gru 10478). We then introduce the Tarski's axiom ax-groth 10510 and prove various properties from that.

 
4.1  Inaccessibles
 
4.1.1  Weakly and strongly inaccessible cardinals
 
Syntaxcwina 10369 The class of weak inaccessibles.
class Inaccw
 
Syntaxcina 10370 The class of strong inaccessibles.
class Inacc
 
Definitiondf-wina 10371* An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows ω as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013.)
Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧)}
 
Definitiondf-ina 10372* An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.)
Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)}
 
Theoremelwina 10373* Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
(𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
 
Theoremelina 10374* Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
(𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
 
Theoremwinaon 10375 A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
(𝐴 ∈ Inaccw𝐴 ∈ On)
 
Theoreminawinalem 10376* Lemma for inawina 10377. (Contributed by Mario Carneiro, 8-Jun-2014.)
(𝐴 ∈ On → (∀𝑥𝐴 𝒫 𝑥𝐴 → ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
 
Theoreminawina 10377 Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.)
(𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
 
Theoremomina 10378 ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.)
ω ∈ Inacc
 
Theoremwinacard 10379 A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.)
(𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
 
Theoremwinainflem 10380* A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
 
Theoremwinainf 10381 A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
(𝐴 ∈ Inaccw → ω ⊆ 𝐴)
 
Theoremwinalim 10382 A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
(𝐴 ∈ Inaccw → Lim 𝐴)
 
Theoremwinalim2 10383* A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
 
Theoremwinafp 10384 A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.)
((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)
 
Theoremwinafpi 10385 This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 4514 to turn this type of statement into the closed form statement winafp 10384, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 10384 using this theorem and dedth 4514, in ZFC. (You can prove this if you use ax-groth 10510, though.) (Contributed by Mario Carneiro, 28-May-2014.)
𝐴 ∈ Inaccw    &   𝐴 ≠ ω       (ℵ‘𝐴) = 𝐴
 
Theoremgchina 10386 Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
(GCH = V → Inaccw = Inacc)
 
4.1.2  Weak universes
 
Syntaxcwun 10387 Extend class definition to include the class of all weak universes.
class WUni
 
Syntaxcwunm 10388 Extend class definition to include the map whose value is the smallest weak universe of which the given set is a subset.
class wUniCl
 
Definitiondf-wun 10389* The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun 10427) whereas the analogue for Grothendieck universes requires ax-groth 10510 (see grothtsk 10522). (Contributed by Mario Carneiro, 2-Jan-2017.)
WUni = {𝑢 ∣ (Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢))}
 
Definitiondf-wunc 10390* A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
 
Theoremiswun 10391* Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
 
Theoremwuntr 10392 A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝑈 ∈ WUni → Tr 𝑈)
 
Theoremwununi 10393 A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)       (𝜑 𝐴𝑈)
 
Theoremwunpw 10394 A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)       (𝜑 → 𝒫 𝐴𝑈)
 
Theoremwunelss 10395 The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)       (𝜑𝐴𝑈)
 
Theoremwunpr 10396 A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑈)       (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
 
Theoremwunun 10397 A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑈)       (𝜑 → (𝐴𝐵) ∈ 𝑈)
 
Theoremwuntp 10398 A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑈)    &   (𝜑𝐶𝑈)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈)
 
Theoremwunss 10399 A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝐴)       (𝜑𝐵𝑈)
 
Theoremwunin 10400 A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝑈 ∈ WUni)    &   (𝜑𝐴𝑈)       (𝜑 → (𝐴𝐵) ∈ 𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >