| Metamath
Proof Explorer Theorem List (p. 104 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fin23lem29 10301* | Lemma for fin23 10349. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) & ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} & ⊢ 𝑄 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ 𝑃 (𝑥 ∩ 𝑃) ≈ 𝑤)) & ⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) & ⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran 𝑈)) ∘ 𝑄)) ⇒ ⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 | ||
| Theorem | fin23lem30 10302* | Lemma for fin23 10349. The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) & ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} & ⊢ 𝑄 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ 𝑃 (𝑥 ∩ 𝑃) ≈ 𝑤)) & ⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) & ⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran 𝑈)) ∘ 𝑄)) ⇒ ⊢ (Fun 𝑡 → (∪ ran 𝑍 ∩ ∩ ran 𝑈) = ∅) | ||
| Theorem | fin23lem31 10303* | Lemma for fin23 10349. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) & ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} & ⊢ 𝑄 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ 𝑃 (𝑥 ∩ 𝑃) ≈ 𝑤)) & ⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) & ⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran 𝑈)) ∘ 𝑄)) ⇒ ⊢ ((𝑡:ω–1-1→𝑉 ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡) | ||
| Theorem | fin23lem32 10304* | Lemma for fin23 10349. Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) & ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} & ⊢ 𝑄 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ 𝑃 (𝑥 ∩ 𝑃) ≈ 𝑤)) & ⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) & ⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran 𝑈)) ∘ 𝑄)) ⇒ ⊢ (𝐺 ∈ 𝐹 → ∃𝑓∀𝑏((𝑏:ω–1-1→V ∧ ∪ ran 𝑏 ⊆ 𝐺) → ((𝑓‘𝑏):ω–1-1→V ∧ ∪ ran (𝑓‘𝑏) ⊊ ∪ ran 𝑏))) | ||
| Theorem | fin23lem33 10305* | Lemma for fin23 10349. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} ⇒ ⊢ (𝐺 ∈ 𝐹 → ∃𝑓∀𝑏((𝑏:ω–1-1→V ∧ ∪ ran 𝑏 ⊆ 𝐺) → ((𝑓‘𝑏):ω–1-1→V ∧ ∪ ran (𝑓‘𝑏) ⊊ ∪ ran 𝑏))) | ||
| Theorem | fin23lem34 10306* | Lemma for fin23 10349. Establish induction invariants on 𝑌 which parameterizes our contradictory chain of subsets. In this section, ℎ is the hypothetically assumed family of subsets, 𝑔 is the ground set, and 𝑖 is the induction function constructed in the previous section. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ (𝜑 → ℎ:ω–1-1→V) & ⊢ (𝜑 → ∪ ran ℎ ⊆ 𝐺) & ⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran 𝑗))) & ⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ((𝑌‘𝐴):ω–1-1→V ∧ ∪ ran (𝑌‘𝐴) ⊆ 𝐺)) | ||
| Theorem | fin23lem35 10307* | Lemma for fin23 10349. Strict order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ (𝜑 → ℎ:ω–1-1→V) & ⊢ (𝜑 → ∪ ran ℎ ⊆ 𝐺) & ⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran 𝑗))) & ⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∪ ran (𝑌‘suc 𝐴) ⊊ ∪ ran (𝑌‘𝐴)) | ||
| Theorem | fin23lem36 10308* | Lemma for fin23 10349. Weak order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ (𝜑 → ℎ:ω–1-1→V) & ⊢ (𝜑 → ∪ ran ℎ ⊆ 𝐺) & ⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran 𝑗))) & ⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝐴 ∧ 𝜑)) → ∪ ran (𝑌‘𝐴) ⊆ ∪ ran (𝑌‘𝐵)) | ||
| Theorem | fin23lem38 10309* | Lemma for fin23 10349. The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ (𝜑 → ℎ:ω–1-1→V) & ⊢ (𝜑 → ∪ ran ℎ ⊆ 𝐺) & ⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran 𝑗))) & ⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) ⇒ ⊢ (𝜑 → ¬ ∩ ran (𝑏 ∈ ω ↦ ∪ ran (𝑌‘𝑏)) ∈ ran (𝑏 ∈ ω ↦ ∪ ran (𝑌‘𝑏))) | ||
| Theorem | fin23lem39 10310* | Lemma for fin23 10349. Thus, we have that 𝑔 could not have been in 𝐹 after all. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} & ⊢ (𝜑 → ℎ:ω–1-1→V) & ⊢ (𝜑 → ∪ ran ℎ ⊆ 𝐺) & ⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran 𝑗))) & ⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) ⇒ ⊢ (𝜑 → ¬ 𝐺 ∈ 𝐹) | ||
| Theorem | fin23lem40 10311* | Lemma for fin23 10349. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} ⇒ ⊢ (𝐴 ∈ FinII → 𝐴 ∈ 𝐹) | ||
| Theorem | fin23lem41 10312* | Lemma for fin23 10349. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} ⇒ ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ FinIII) | ||
| Theorem | isf32lem1 10313* | Lemma for isfin3-2 10327. Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | isf32lem2 10314* | Lemma for isfin3-2 10327. Non-minimum implies that there is always another decrease. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → ∃𝑎 ∈ ω (𝐴 ∈ 𝑎 ∧ (𝐹‘suc 𝑎) ⊊ (𝐹‘𝑎))) | ||
| Theorem | isf32lem3 10315* | Lemma for isfin3-2 10327. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ∈ 𝐴 ∧ 𝜑)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) | ||
| Theorem | isf32lem4 10316* | Lemma for isfin3-2 10327. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹‘𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹‘𝐵) ∖ (𝐹‘suc 𝐵))) = ∅) | ||
| Theorem | isf32lem5 10317* | Lemma for isfin3-2 10327. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} ⇒ ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | ||
| Theorem | isf32lem6 10318* | Lemma for isfin3-2 10327. Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} & ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) & ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ≠ ∅) | ||
| Theorem | isf32lem7 10319* | Lemma for isfin3-2 10327. Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} & ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) & ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) ⇒ ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾‘𝐴) ∩ (𝐾‘𝐵)) = ∅) | ||
| Theorem | isf32lem8 10320* | Lemma for isfin3-2 10327. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} & ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) & ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐾‘𝐴) ⊆ 𝐺) | ||
| Theorem | isf32lem9 10321* | Lemma for isfin3-2 10327. Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} & ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) & ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) & ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) ⇒ ⊢ (𝜑 → 𝐿:𝐺–onto→ω) | ||
| Theorem | isf32lem10 10322* | Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) & ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) & ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) & ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} & ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) & ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) & ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) | ||
| Theorem | isf32lem11 10323* | Lemma for isfin3-2 10327. Remove hypotheses from isf32lem10 10322. (Contributed by Stefan O'Rear, 17-May-2015.) |
| ⊢ ((𝐺 ∈ 𝑉 ∧ (𝐹:ω⟶𝒫 𝐺 ∧ ∀𝑏 ∈ ω (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹)) → ω ≼* 𝐺) | ||
| Theorem | isf32lem12 10324* | Lemma for isfin3-2 10327. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} ⇒ ⊢ (𝐺 ∈ 𝑉 → (¬ ω ≼* 𝐺 → 𝐺 ∈ 𝐹)) | ||
| Theorem | isfin32i 10325 | One half of isfin3-2 10327. (Contributed by Mario Carneiro, 3-Jun-2015.) |
| ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) | ||
| Theorem | isf33lem 10326* | Lemma for isfin3-3 10328. (Contributed by Stefan O'Rear, 17-May-2015.) |
| ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | ||
| Theorem | isfin3-2 10327 | Weakly Dedekind-infinite sets are exactly those which can be mapped onto ω. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴)) | ||
| Theorem | isfin3-3 10328* | Weakly Dedekind-infinite sets are exactly those with an ω-indexed descending chain of subsets. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | ||
| Theorem | fin33i 10329* | Inference from isfin3-3 10328. (This is actually a bit stronger than isfin3-3 10328 because it does not assume 𝐹 is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ FinIII ∧ 𝐹:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) → ∩ ran 𝐹 ∈ ran 𝐹) | ||
| Theorem | compsscnvlem 10330* | Lemma for compsscnv 10331. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = (𝐴 ∖ 𝑥)) → (𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = (𝐴 ∖ 𝑦))) | ||
| Theorem | compsscnv 10331* | Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ◡𝐹 = 𝐹 | ||
| Theorem | isf34lem1 10332* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) | ||
| Theorem | isf34lem2 10333* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴⟶𝒫 𝐴) | ||
| Theorem | compssiso 10334* | Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) | ||
| Theorem | isf34lem3 10335* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) | ||
| Theorem | compss 10336* | Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} | ||
| Theorem | isf34lem4 10337* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘∪ 𝑋) = ∩ (𝐹 “ 𝑋)) | ||
| Theorem | isf34lem5 10338* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘∩ 𝑋) = ∪ (𝐹 “ 𝑋)) | ||
| Theorem | isf34lem7 10339* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ ((𝐴 ∈ FinIII ∧ 𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∪ ran 𝐺 ∈ ran 𝐺) | ||
| Theorem | isf34lem6 10340* | Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran 𝑓 ∈ ran 𝑓))) | ||
| Theorem | fin34i 10341* | Inference from isfin3-4 10342. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ FinIII ∧ 𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑥 ∈ ω (𝐺‘𝑥) ⊆ (𝐺‘suc 𝑥)) → ∪ ran 𝐺 ∈ ran 𝐺) | ||
| Theorem | isfin3-4 10342* | Weakly Dedekind-infinite sets are exactly those with an ω-indexed ascending chain of subsets. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘𝑥) ⊆ (𝑓‘suc 𝑥) → ∪ ran 𝑓 ∈ ran 𝑓))) | ||
| Theorem | fin11a 10343 | Every I-finite set is Ia-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinIa) | ||
| Theorem | enfin1ai 10344 | Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ FinIa → 𝐵 ∈ FinIa)) | ||
| Theorem | isfin1-2 10345 | A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) | ||
| Theorem | isfin1-3 10346 | A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | ||
| Theorem | isfin1-4 10347 | A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ [⊊] Fr 𝒫 𝐴)) | ||
| Theorem | dffin1-5 10348 | Compact quantifier-free version of the standard definition df-fin 8925. (Contributed by Stefan O'Rear, 6-Jan-2015.) |
| ⊢ Fin = ( ≈ “ ω) | ||
| Theorem | fin23 10349 |
Every II-finite set (every chain of subsets has a maximal element) is
III-finite (has no denumerable collection of subsets). The proof here
is the only one I could find, from
http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm619.pdf
p.94 (writeup by
Tarski, credited to Kuratowski). Translated into English and modern
notation, the proof proceeds as follows (variables renamed for
uniqueness):
Suppose for a contradiction that 𝐴 is a set which is II-finite but not III-finite. For any countable sequence of distinct subsets 𝑇 of 𝐴, we can form a decreasing sequence of nonempty subsets (𝑈‘𝑇) by taking finite intersections of initial segments of 𝑇 while skipping over any element of 𝑇 which would cause the intersection to be empty. By II-finiteness (as fin2i2 10278) this sequence contains its intersection, call it 𝑌; since by induction every subset in the sequence 𝑈 is nonempty, the intersection must be nonempty. Suppose that an element 𝑋 of 𝑇 has nonempty intersection with 𝑌. Thus, said element has a nonempty intersection with the corresponding element of 𝑈, therefore it was used in the construction of 𝑈 and all further elements of 𝑈 are subsets of 𝑋, thus 𝑋 contains the 𝑌. That is, all elements of 𝑋 either contain 𝑌 or are disjoint from it. Since there are only two cases, there must exist an infinite subset of 𝑇 which uniformly either contain 𝑌 or are disjoint from it. In the former case we can create an infinite set by subtracting 𝑌 from each element. In either case, call the result 𝑍; this is an infinite set of subsets of 𝐴, each of which is disjoint from 𝑌 and contained in the union of 𝑇; the union of 𝑍 is strictly contained in the union of 𝑇, because only the latter is a superset of the nonempty set 𝑌. The preceding four steps may be iterated a countable number of times starting from the assumed denumerable set of subsets to produce a denumerable sequence 𝐵 of the 𝑇 sets from each stage. Great caution is required to avoid ax-dc 10406 here; in particular an effective version of the pigeonhole principle (for aleph-null pigeons and 2 holes) is required. Since a denumerable set of subsets is assumed to exist, we can conclude ω ∈ V without the axiom. This 𝐵 sequence is strictly decreasing, thus it has no minimum, contradicting the first assumption. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ FinII → 𝐴 ∈ FinIII) | ||
| Theorem | fin34 10350 | Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| ⊢ (𝐴 ∈ FinIII → 𝐴 ∈ FinIV) | ||
| Theorem | isfin5-2 10351 | Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinV ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐴 ≈ (𝐴 ⊔ 𝐴)))) | ||
| Theorem | fin45 10352 | Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ∈ FinIV → 𝐴 ∈ FinV) | ||
| Theorem | fin56 10353 | Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) | ||
| Theorem | fin17 10354 | Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinVII) | ||
| Theorem | fin67 10355 | Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ FinVI → 𝐴 ∈ FinVII) | ||
| Theorem | isfin7-2 10356 | A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ (𝐴 ∈ dom card → 𝐴 ∈ Fin))) | ||
| Theorem | fin71num 10357 | A well-orderable set is VII-finite iff it is I-finite. Thus, even without choice, on the class of well-orderable sets all eight definitions of finite set coincide. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ∈ dom card → (𝐴 ∈ FinVII ↔ 𝐴 ∈ Fin)) | ||
| Theorem | dffin7-2 10358 | Class form of isfin7-2 10356. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ FinVII = (Fin ∪ (V ∖ dom card)) | ||
| Theorem | dfacfin7 10359 | Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (CHOICE ↔ FinVII = Fin) | ||
| Theorem | fin1a2lem1 10360 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ (𝐴 ∈ On → (𝑆‘𝐴) = suc 𝐴) | ||
| Theorem | fin1a2lem2 10361 | Lemma for fin1a2 10375. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ 𝑆:On–1-1→On | ||
| Theorem | fin1a2lem3 10362 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) ⇒ ⊢ (𝐴 ∈ ω → (𝐸‘𝐴) = (2o ·o 𝐴)) | ||
| Theorem | fin1a2lem4 10363 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) ⇒ ⊢ 𝐸:ω–1-1→ω | ||
| Theorem | fin1a2lem5 10364 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) ⇒ ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) | ||
| Theorem | fin1a2lem6 10365 | Lemma for fin1a2 10375. Establish that ω can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) & ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ (𝑆 ↾ ran 𝐸):ran 𝐸–1-1-onto→(ω ∖ ran 𝐸) | ||
| Theorem | fin1a2lem7 10366* | Lemma for fin1a2 10375. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) & ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴 ∖ 𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII) | ||
| Theorem | fin1a2lem8 10367* | Lemma for fin1a2 10375. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴 ∖ 𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII) | ||
| Theorem | fin1a2lem9 10368* | Lemma for fin1a2 10375. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
| ⊢ (( [⊊] Or 𝑋 ∧ 𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ∈ Fin) | ||
| Theorem | fin1a2lem10 10369 | Lemma for fin1a2 10375. A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [⊊] Or 𝐴) → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | fin1a2lem11 10370* | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 8-Nov-2014.) |
| ⊢ (( [⊊] Or 𝐴 ∧ 𝐴 ⊆ Fin) → ran (𝑏 ∈ ω ↦ ∪ {𝑐 ∈ 𝐴 ∣ 𝑐 ≼ 𝑏}) = (𝐴 ∪ {∅})) | ||
| Theorem | fin1a2lem12 10371 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII) | ||
| Theorem | fin1a2lem13 10372 | Lemma for fin1a2 10375. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∖ 𝐶) ∈ FinII) | ||
| Theorem | fin12 10373 | Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 10375. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) | ||
| Theorem | fin1a2s 10374* | An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ FinII)) → 𝐴 ∈ FinII) | ||
| Theorem | fin1a2 10375 | Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ FinIa → 𝐴 ∈ FinII) | ||
| Theorem | itunifval 10376* | Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) = (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝐴) ↾ ω)) | ||
| Theorem | itunifn 10377* | Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑈‘𝐴) Fn ω) | ||
| Theorem | ituni0 10378* | A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴)‘∅) = 𝐴) | ||
| Theorem | itunisuc 10379* | Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ ((𝑈‘𝐴)‘suc 𝐵) = ∪ ((𝑈‘𝐴)‘𝐵) | ||
| Theorem | itunitc1 10380* | Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ ((𝑈‘𝐴)‘𝐵) ⊆ (TC‘𝐴) | ||
| Theorem | itunitc 10381* | The union of all union iterates creates the transitive closure; compare trcl 9688. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ (TC‘𝐴) = ∪ ran (𝑈‘𝐴) | ||
| Theorem | ituniiun 10382* | Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ((𝑈‘𝐴)‘suc 𝐵) = ∪ 𝑎 ∈ 𝐴 ((𝑈‘𝑎)‘𝐵)) | ||
| Theorem | hsmexlem7 10383* | Lemma for hsmex 10392. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) ⇒ ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) | ||
| Theorem | hsmexlem8 10384* | Lemma for hsmex 10392. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) ⇒ ⊢ (𝑎 ∈ ω → (𝐻‘suc 𝑎) = (har‘𝒫 (𝑋 × (𝐻‘𝑎)))) | ||
| Theorem | hsmexlem9 10385* | Lemma for hsmex 10392. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) ⇒ ⊢ (𝑎 ∈ ω → (𝐻‘𝑎) ∈ On) | ||
| Theorem | hsmexlem1 10386 | Lemma for hsmex 10392. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑂 = OrdIso( E , 𝐴) ⇒ ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≼* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵)) | ||
| Theorem | hsmexlem2 10387* | Lemma for hsmex 10392. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 10535 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 18-Sep-2021.) |
| ⊢ 𝐹 = OrdIso( E , 𝐵) & ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) | ||
| Theorem | hsmexlem3 10388* | Lemma for hsmex 10392. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = OrdIso( E , 𝐵) & ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) ⇒ ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) | ||
| Theorem | hsmexlem4 10389* | Lemma for hsmex 10392. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) & ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) & ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} & ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) ⇒ ⊢ ((𝑐 ∈ ω ∧ 𝑑 ∈ 𝑆) → dom 𝑂 ∈ (𝐻‘𝑐)) | ||
| Theorem | hsmexlem5 10390* | Lemma for hsmex 10392. Combining the above constraints, along with itunitc 10381 and tcrank 9844, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) & ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) & ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} & ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) ⇒ ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) | ||
| Theorem | hsmexlem6 10391* | Lemma for hsmex 10392. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) & ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) & ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} & ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) ⇒ ⊢ 𝑆 ∈ V | ||
| Theorem | hsmex 10392* | The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9552. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) | ||
| Theorem | hsmex2 10393* | The set of hereditary size-limited sets, assuming ax-reg 9552. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) | ||
| Theorem | hsmex3 10394* | The set of hereditary size-limited sets, assuming ax-reg 9552, using strict comparison (an easy corollary by separation). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≺ 𝑋} ∈ V) | ||
In this section we add the Axiom of Choice ax-ac 10419, as well as weaker forms such as the axiom of countable choice ax-cc 10395 and dependent choice ax-dc 10406. We introduce these weaker forms so that theorems that do not need the full power of the axiom of choice, but need more than simple ZF, can use these intermediate axioms instead. The combination of the Zermelo-Fraenkel axioms and the axiom of choice is often abbreviated as ZFC. The axiom of choice is widely accepted, and ZFC is the most commonly-accepted fundamental set of axioms for mathematics. However, there have been and still are some lingering controversies about the Axiom of Choice. The axiom of choice does not satisfy those who wish to have a constructive proof (e.g., it will not satisfy intuitionistic logic). Thus, we make it easy to identify which proofs depend on the axiom of choice or its weaker forms. | ||
| Axiom | ax-cc 10395* | The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 10437, but is weak enough that it can be proven using DC (see axcc 10418). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | ||
| Theorem | axcc2lem 10396* | Lemma for axcc2 10397. (Contributed by Mario Carneiro, 8-Feb-2013.) |
| ⊢ 𝐾 = (𝑛 ∈ ω ↦ if((𝐹‘𝑛) = ∅, {∅}, (𝐹‘𝑛))) & ⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐾‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴‘𝑛)))) ⇒ ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
| Theorem | axcc2 10397* | A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.) |
| ⊢ ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω ((𝐹‘𝑛) ≠ ∅ → (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
| Theorem | axcc3 10398* | A possibly more useful version of ax-cc 10395 using sequences 𝐹(𝑛) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Mario Carneiro, 26-Dec-2014.) |
| ⊢ 𝐹 ∈ V & ⊢ 𝑁 ≈ ω ⇒ ⊢ ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝐹 ≠ ∅ → (𝑓‘𝑛) ∈ 𝐹)) | ||
| Theorem | axcc4 10399* | A version of axcc3 10398 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝑁 ≈ ω & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) | ||
| Theorem | acncc 10400 | An ax-cc 10395 equivalent: every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ AC ω = V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |