| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fin3 | Structured version Visualization version GIF version | ||
| Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of [Levy58] p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-fin3 | ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfin3 10321 | . 2 class FinIII | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | 3 | cpw 4600 | . . . 4 class 𝒫 𝑥 |
| 5 | cfin4 10320 | . . . 4 class FinIV | |
| 6 | 4, 5 | wcel 2108 | . . 3 wff 𝒫 𝑥 ∈ FinIV |
| 7 | 6, 2 | cab 2714 | . 2 class {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} |
| 8 | 1, 7 | wceq 1540 | 1 wff FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isfin3 10336 |
| Copyright terms: Public domain | W3C validator |