| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fin5 | Structured version Visualization version GIF version | ||
| Description: A set is V-finite iff it behaves finitely under ⊔. Definition V of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-fin5 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfin5 10301 | . 2 class FinV | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | c0 4313 | . . . . 5 class ∅ | |
| 5 | 3, 4 | wceq 1540 | . . . 4 wff 𝑥 = ∅ |
| 6 | 3, 3 | cdju 9917 | . . . . 5 class (𝑥 ⊔ 𝑥) |
| 7 | csdm 8963 | . . . . 5 class ≺ | |
| 8 | 3, 6, 7 | wbr 5124 | . . . 4 wff 𝑥 ≺ (𝑥 ⊔ 𝑥) |
| 9 | 5, 8 | wo 847 | . . 3 wff (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥)) |
| 10 | 9, 2 | cab 2714 | . 2 class {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
| 11 | 1, 10 | wceq 1540 | 1 wff FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isfin5 10318 |
| Copyright terms: Public domain | W3C validator |