|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-fin5 | Structured version Visualization version GIF version | ||
| Description: A set is V-finite iff it behaves finitely under ⊔. Definition V of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| df-fin5 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cfin5 10322 | . 2 class FinV | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 | 
| 4 | c0 4333 | . . . . 5 class ∅ | |
| 5 | 3, 4 | wceq 1540 | . . . 4 wff 𝑥 = ∅ | 
| 6 | 3, 3 | cdju 9938 | . . . . 5 class (𝑥 ⊔ 𝑥) | 
| 7 | csdm 8984 | . . . . 5 class ≺ | |
| 8 | 3, 6, 7 | wbr 5143 | . . . 4 wff 𝑥 ≺ (𝑥 ⊔ 𝑥) | 
| 9 | 5, 8 | wo 848 | . . 3 wff (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥)) | 
| 10 | 9, 2 | cab 2714 | . 2 class {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} | 
| 11 | 1, 10 | wceq 1540 | 1 wff FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: isfin5 10339 | 
| Copyright terms: Public domain | W3C validator |