Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fin5 | Structured version Visualization version GIF version |
Description: A set is V-finite iff it behaves finitely under ⊔. Definition V of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
Ref | Expression |
---|---|
df-fin5 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfin5 9969 | . 2 class FinV | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑥 |
4 | c0 4253 | . . . . 5 class ∅ | |
5 | 3, 4 | wceq 1539 | . . . 4 wff 𝑥 = ∅ |
6 | 3, 3 | cdju 9587 | . . . . 5 class (𝑥 ⊔ 𝑥) |
7 | csdm 8690 | . . . . 5 class ≺ | |
8 | 3, 6, 7 | wbr 5070 | . . . 4 wff 𝑥 ≺ (𝑥 ⊔ 𝑥) |
9 | 5, 8 | wo 843 | . . 3 wff (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥)) |
10 | 9, 2 | cab 2715 | . 2 class {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
11 | 1, 10 | wceq 1539 | 1 wff FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
Colors of variables: wff setvar class |
This definition is referenced by: isfin5 9986 |
Copyright terms: Public domain | W3C validator |