Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin3 | Structured version Visualization version GIF version |
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin3 | ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin3 10145 | . . 3 ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}) |
3 | pwexr 7677 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) | |
4 | pweq 4561 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
5 | 4 | eleq1d 2821 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV)) |
6 | 3, 5 | elab3 3627 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV) |
7 | 2, 6 | bitri 274 | 1 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3441 𝒫 cpw 4547 FinIVcfin4 10137 FinIIIcfin3 10138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3903 df-in 3905 df-ss 3915 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4853 df-fin3 10145 |
This theorem is referenced by: fin23lem41 10209 isfin32i 10222 fin34 10247 |
Copyright terms: Public domain | W3C validator |