MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3 Structured version   Visualization version   GIF version

Theorem isfin3 10187
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin3 10179 . . 3 FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
21eleq2i 2823 . 2 (𝐴 ∈ FinIII𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV})
3 pwexr 7698 . . 3 (𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
4 pweq 4561 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
54eleq1d 2816 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV))
63, 5elab3 3637 . 2 (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV)
72, 6bitri 275 1 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  𝒫 cpw 4547  FinIVcfin4 10171  FinIIIcfin3 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-fin3 10179
This theorem is referenced by:  fin23lem41  10243  isfin32i  10256  fin34  10281
  Copyright terms: Public domain W3C validator