| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin3 | Structured version Visualization version GIF version | ||
| Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin3 | ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin3 10179 | . . 3 ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}) |
| 3 | pwexr 7698 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) | |
| 4 | pweq 4561 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 5 | 4 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV)) |
| 6 | 3, 5 | elab3 3637 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV) |
| 7 | 2, 6 | bitri 275 | 1 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 𝒫 cpw 4547 FinIVcfin4 10171 FinIIIcfin3 10172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-fin3 10179 |
| This theorem is referenced by: fin23lem41 10243 isfin32i 10256 fin34 10281 |
| Copyright terms: Public domain | W3C validator |