MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3 Structured version   Visualization version   GIF version

Theorem isfin3 10320
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin3 10312 . . 3 FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
21eleq2i 2821 . 2 (𝐴 ∈ FinIII𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV})
3 pwexr 7767 . . 3 (𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
4 pweq 4617 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
54eleq1d 2814 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV))
63, 5elab3 3675 . 2 (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV)
72, 6bitri 275 1 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  {cab 2705  Vcvv 3471  𝒫 cpw 4603  FinIVcfin4 10304  FinIIIcfin3 10305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-un 3952  df-in 3954  df-ss 3964  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4909  df-fin3 10312
This theorem is referenced by:  fin23lem41  10376  isfin32i  10389  fin34  10414
  Copyright terms: Public domain W3C validator