MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3 Structured version   Visualization version   GIF version

Theorem isfin3 10249
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin3 10241 . . 3 FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
21eleq2i 2820 . 2 (𝐴 ∈ FinIII𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV})
3 pwexr 7741 . . 3 (𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
4 pweq 4577 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
54eleq1d 2813 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV))
63, 5elab3 3653 . 2 (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV)
72, 6bitri 275 1 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  𝒫 cpw 4563  FinIVcfin4 10233  FinIIIcfin3 10234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-pw 4565  df-sn 4590  df-pr 4592  df-uni 4872  df-fin3 10241
This theorem is referenced by:  fin23lem41  10305  isfin32i  10318  fin34  10343
  Copyright terms: Public domain W3C validator