![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin3 | Structured version Visualization version GIF version |
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin3 | ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin3 10282 | . . 3 ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ FinIII ↔ 𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}) |
3 | pwexr 7751 | . . 3 ⊢ (𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) | |
4 | pweq 4616 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
5 | 4 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV)) |
6 | 3, 5 | elab3 3676 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV) |
7 | 2, 6 | bitri 274 | 1 ⊢ (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 Vcvv 3474 𝒫 cpw 4602 FinIVcfin4 10274 FinIIIcfin3 10275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-pw 4604 df-sn 4629 df-pr 4631 df-uni 4909 df-fin3 10282 |
This theorem is referenced by: fin23lem41 10346 isfin32i 10359 fin34 10384 |
Copyright terms: Public domain | W3C validator |