MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3 Structured version   Visualization version   GIF version

Theorem isfin3 10290
Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin3 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin3 10282 . . 3 FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
21eleq2i 2825 . 2 (𝐴 ∈ FinIII𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV})
3 pwexr 7751 . . 3 (𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
4 pweq 4616 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
54eleq1d 2818 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ FinIV ↔ 𝒫 𝐴 ∈ FinIV))
63, 5elab3 3676 . 2 (𝐴 ∈ {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} ↔ 𝒫 𝐴 ∈ FinIV)
72, 6bitri 274 1 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  {cab 2709  Vcvv 3474  𝒫 cpw 4602  FinIVcfin4 10274  FinIIIcfin3 10275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631  df-uni 4909  df-fin3 10282
This theorem is referenced by:  fin23lem41  10346  isfin32i  10359  fin34  10384
  Copyright terms: Public domain W3C validator