Home | Metamath
Proof Explorer Theorem List (p. 103 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ttukeylem6 10201* | Lemma for ttukey 10205. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ suc (card‘(∪ 𝐴 ∖ 𝐵))) → (𝐺‘𝐶) ∈ 𝐴) | ||
Theorem | ttukeylem7 10202* | Lemma for ttukey 10205. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) & ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
Theorem | ttukey2g 10203* | The Teichmüller-Tukey Lemma ttukey 10205 with a slightly stronger conclusion: we can set up the maximal element of 𝐴 so that it also contains some given 𝐵 ∈ 𝐴 as a subset. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | ||
Theorem | ttukeyg 10204* | The Teichmüller-Tukey Lemma ttukey 10205 stated with the "choice" as an antecedent (the hypothesis ∪ 𝐴 ∈ dom card says that ∪ 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
Theorem | ttukey 10205* | The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If 𝐴 is a nonempty collection of finite character, then 𝐴 has a maximal element with respect to inclusion. Here "finite character" means that 𝑥 ∈ 𝐴 iff every finite subset of 𝑥 is in 𝐴. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | ||
Theorem | axdclem 10206* | Lemma for axdc 10208. (Contributed by Mario Carneiro, 25-Jan-2013.) |
⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹‘𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹‘𝐾)𝑥(𝐹‘suc 𝐾))) | ||
Theorem | axdclem2 10207* | Lemma for axdc 10208. Using the full Axiom of Choice, we can construct a choice function 𝑔 on 𝒫 dom 𝑥. From this, we can build a sequence 𝐹 starting at any value 𝑠 ∈ dom 𝑥 by repeatedly applying 𝑔 to the set (𝐹‘𝑥) (where 𝑥 is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013.) |
⊢ 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧 ∣ 𝑦𝑥𝑧})), 𝑠) ↾ ω) ⇒ ⊢ (∃𝑧 𝑠𝑥𝑧 → (ran 𝑥 ⊆ dom 𝑥 → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛))) | ||
Theorem | axdc 10208* | This theorem derives ax-dc 10133 using ax-ac 10146 and ax-inf 9326. Thus, AC implies DC, but not vice-versa (so that ZFC is strictly stronger than ZF+DC). (New usage is discouraged.) (Contributed by Mario Carneiro, 25-Jan-2013.) |
⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) | ||
Theorem | fodomg 10209 | An onto function implies dominance of domain over range. Lemma 10.20 of [Kunen] p. 30. This theorem uses the axiom of choice ac7g 10161. The axiom of choice is not needed for finite sets, see fodomfi 9022. See also fodomnum 9744. (Contributed by NM, 23-Jul-2004.) (Proof shortened by BJ, 20-May-2024.) |
⊢ (𝐴 ∈ 𝑉 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
Theorem | fodom 10210 | An onto function implies dominance of domain over range. (Contributed by NM, 23-Jul-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴) | ||
Theorem | dmct 10211 | The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → dom 𝐴 ≼ ω) | ||
Theorem | rnct 10212 | The range of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → ran 𝐴 ≼ ω) | ||
Theorem | fodomb 10213* | Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of [TakeutiZaring] p. 93. (Contributed by NM, 29-Jul-2004.) |
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴)) | ||
Theorem | wdomac 10214 | When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌) | ||
Theorem | brdom3 10215* | Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
Theorem | brdom5 10216* | An equivalence to a dominance relation. (Contributed by NM, 29-Mar-2007.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
Theorem | brdom4 10217* | An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 𝑥𝑓𝑦 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦𝑓𝑥)) | ||
Theorem | brdom7disj 10218* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 29-Mar-2007.) (Revised by NM, 16-Jun-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
Theorem | brdom6disj 10219* | An equivalence to a dominance relation for disjoint sets. (Contributed by NM, 5-Apr-2007.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝐴 ∩ 𝐵) = ∅ ⇒ ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓(∀𝑥 ∈ 𝐵 ∃*𝑦{𝑥, 𝑦} ∈ 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 {𝑦, 𝑥} ∈ 𝑓)) | ||
Theorem | fin71ac 10220 | Once we allow AC, the "strongest" definition of finite set becomes equivalent to the "weakest" and the entire hierarchy collapses. (Contributed by Stefan O'Rear, 29-Oct-2014.) |
⊢ FinVII = Fin | ||
Theorem | imadomg 10221 | An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.) |
⊢ (𝐴 ∈ 𝐵 → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | ||
Theorem | fimact 10222 | The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
⊢ ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹 “ 𝐴) ≼ ω) | ||
Theorem | fnrndomg 10223 | The range of a function is dominated by its domain. (Contributed by NM, 1-Sep-2004.) |
⊢ (𝐴 ∈ 𝐵 → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) | ||
Theorem | fnct 10224 | If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ≼ ω) → 𝐹 ≼ ω) | ||
Theorem | mptct 10225* | A countable mapping set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
Theorem | iunfo 10226* | Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⇒ ⊢ (2nd ↾ 𝑇):𝑇–onto→∪ 𝑥 ∈ 𝐴 𝐵 | ||
Theorem | iundom2g 10227* | An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) ⇒ ⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) | ||
Theorem | iundomg 10228* | An upper bound for the cardinality of an indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) & ⊢ (𝜑 → (𝐴 × 𝐶) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ (𝐴 × 𝐶)) | ||
Theorem | iundom 10229* | An upper bound for the cardinality of an indexed union. 𝐶 depends on 𝑥 and should be thought of as 𝐶(𝑥). (Contributed by NM, 26-Mar-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ≼ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ (𝐴 × 𝐵)) | ||
Theorem | unidom 10230* | An upper bound for the cardinality of a union. Theorem 10.47 of [TakeutiZaring] p. 98. (Contributed by NM, 25-Mar-2006.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ 𝐵) → ∪ 𝐴 ≼ (𝐴 × 𝐵)) | ||
Theorem | uniimadom 10231* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
Theorem | uniimadomf 10232* | An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10231 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
⊢ Ⅎ𝑥𝐹 & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | ||
Theorem | cardval 10233* | The value of the cardinal number function. Definition 10.4 of [TakeutiZaring] p. 85. See cardval2 9680 for a simpler version of its value. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴} | ||
Theorem | cardid 10234 | Any set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (card‘𝐴) ≈ 𝐴 | ||
Theorem | cardidg 10235 | Any set is equinumerous to its cardinal number. Closed theorem form of cardid 10234. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ∈ 𝐵 → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardidd 10236 | Any set is equinumerous to its cardinal number. Deduction form of cardid 10234. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (card‘𝐴) ≈ 𝐴) | ||
Theorem | cardf 10237 | The cardinality function is a function with domain the well-orderable sets. Assuming AC, this is the universe. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
⊢ card:V⟶On | ||
Theorem | carden 10238 |
Two sets are equinumerous iff their cardinal numbers are equal. This
important theorem expresses the essential concept behind
"cardinality" or
"size". This theorem appears as Proposition 10.10 of [TakeutiZaring]
p. 85, Theorem 7P of [Enderton] p. 197,
and Theorem 9 of [Suppes] p. 242
(among others). The Axiom of Choice is required for its proof. Related
theorems are hasheni 13990 and the finite-set-only hashen 13989.
This theorem is also known as Hume's Principle. Gottlob Frege's two-volume Grundgesetze der Arithmetik used his Basic Law V to prove this theorem. Unfortunately Basic Law V caused Frege's system to be inconsistent because it was subject to Russell's paradox (see ru 3710). Later scholars have found that Frege primarily used Basic Law V to Hume's Principle. If Basic Law V is replaced by Hume's Principle in Frege's system, much of Frege's work is restored. Grundgesetze der Arithmetik, once Basic Law V is replaced, proves "Frege's theorem" (the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle). See https://plato.stanford.edu/entries/frege-theorem . We take a different approach, using first-order logic and ZFC, to prove the Peano axioms of arithmetic. The theory of cardinality can also be developed without AC by introducing "card" as a primitive notion and stating this theorem as an axiom, as is done with the axiom for cardinal numbers in [Suppes] p. 111. Finally, if we allow the Axiom of Regularity, we can avoid AC by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank (see karden 9584). (Contributed by NM, 22-Oct-2003.) |
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
Theorem | cardeq0 10239 | Only the empty set has cardinality zero. (Contributed by NM, 23-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
Theorem | unsnen 10240 | Equinumerosity of a set with a new element added. (Contributed by NM, 7-Nov-2008.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐵 ∈ 𝐴 → (𝐴 ∪ {𝐵}) ≈ suc (card‘𝐴)) | ||
Theorem | carddom 10241 | Two sets have the dominance relationship iff their cardinalities have the subset relationship. Equation i of [Quine] p. 232. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | cardsdom 10242 | Two sets have the strict dominance relationship iff their cardinalities have the membership relationship. Corollary 19.7(2) of [Eisenberg] p. 310. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
Theorem | domtri 10243 | Trichotomy law for dominance and strict dominance. This theorem is equivalent to the Axiom of Choice. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
Theorem | entric 10244 | Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
Theorem | entri2 10245 | Trichotomy of dominance and strict dominance. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴)) | ||
Theorem | entri3 10246 | Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of [Mendelson] p. 275. (Contributed by NM, 4-Jan-2004.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
Theorem | sdomsdomcard 10247 | A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003.) |
⊢ (𝐴 ≺ 𝐵 ↔ 𝐴 ≺ (card‘𝐵)) | ||
Theorem | canth3 10248 | Cantor's theorem in terms of cardinals. This theorem tells us that no matter how large a cardinal number is, there is a still larger cardinal number. Theorem 18.12 of [Monk1] p. 133. (Contributed by NM, 5-Nov-2003.) |
⊢ (𝐴 ∈ 𝑉 → (card‘𝐴) ∈ (card‘𝒫 𝐴)) | ||
Theorem | infxpidm 10249 | Every infinite class is equinumerous to its Cartesian square. This theorem, which is equivalent to the axiom of choice over ZF, provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. This is a corollary of infxpen 9701 (used via infxpidm2 9704). (Contributed by NM, 17-Sep-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴) | ||
Theorem | ondomon 10250* | The class of ordinals dominated by a given set is an ordinal. Theorem 56 of [Suppes] p. 227. This theorem can be proved without the axiom of choice, see hartogs 9233. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.) Use hartogs 9233 instead. (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | cardmin 10251* | The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
Theorem | ficard 10252 | A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω)) | ||
Theorem | infinf 10253 | Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) | ||
Theorem | unirnfdomd 10254 | The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ≼ 𝑇) | ||
Theorem | konigthlem 10255* | Lemma for konigth 10256. (Contributed by Mario Carneiro, 22-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) & ⊢ 𝐷 = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) & ⊢ 𝐸 = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
Theorem | konigth 10256* | Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) & ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) ⇒ ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) | ||
Theorem | alephsucpw 10257 | The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10363 or gchaleph2 10359.) (Contributed by NM, 27-Aug-2005.) |
⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) | ||
Theorem | aleph1 10258 | The set exponentiation of 2 to the aleph-zero has cardinality of at least aleph-one. (If we were to assume the Continuum Hypothesis, their cardinalities would be the same.) (Contributed by NM, 7-Jul-2004.) |
⊢ (ℵ‘1o) ≼ (2o ↑m (ℵ‘∅)) | ||
Theorem | alephval2 10259* | An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.) |
⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (ℵ‘𝑦) ≺ 𝑥}) | ||
Theorem | dominfac 10260 | A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac 10146. See dominf 10132 for a version proved from ax-cc 10122. (Contributed by NM, 25-Mar-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴) → ω ≼ 𝐴) | ||
Theorem | iunctb 10261* | The countable union of countable sets is countable (indexed union version of unictb 10262). (Contributed by Mario Carneiro, 18-Jan-2014.) |
⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝐵 ≼ ω) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼ ω) | ||
Theorem | unictb 10262* | The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 10261 for indexed union version. (Contributed by NM, 26-Mar-2006.) |
⊢ ((𝐴 ≼ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≼ ω) → ∪ 𝐴 ≼ ω) | ||
Theorem | infmap 10263* | An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) | ||
Theorem | alephadd 10264 | The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) | ||
Theorem | alephmul 10265 | The product of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) × (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) | ||
Theorem | alephexp1 10266 | An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2o ↑m (ℵ‘𝐵))) | ||
Theorem | alephsuc3 10267* | An alternate representation of a successor aleph. Compare alephsuc 9755 and alephsuc2 9767. Equality can be obtained by taking the card of the right-hand side then using alephcard 9757 and carden 10238. (Contributed by NM, 23-Oct-2004.) |
⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) | ||
Theorem | alephexp2 10268* | An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10266 (which works if the base is less than or equal to the exponent) and infmap 10263 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | ||
Theorem | alephreg 10269 | A successor aleph is regular. Theorem 11.15 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.) |
⊢ (cf‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) | ||
Theorem | pwcfsdom 10270* | A corollary of Konig's Theorem konigth 10256. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) ⇒ ⊢ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) | ||
Theorem | cfpwsdom 10271 | A corollary of Konig's Theorem konigth 10256. Theorem 11.29 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (2o ≼ 𝐵 → (ℵ‘𝐴) ≺ (cf‘(card‘(𝐵 ↑m (ℵ‘𝐴))))) | ||
Theorem | alephom 10272 | From canth2 8866, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 10256 (in the form of cfpwsdom 10271), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.) |
⊢ (card‘(2o ↑m ω)) ≠ (ℵ‘ω) | ||
Theorem | smobeth 10273 | The beth function is strictly monotone. This function is not strictly the beth function, but rather bethA is the same as (card‘(𝑅1‘(ω +o 𝐴))), since conventionally we start counting at the first infinite level, and ignore the finite levels. (Contributed by Mario Carneiro, 6-Jun-2013.) (Revised by Mario Carneiro, 2-Jun-2015.) |
⊢ Smo (card ∘ 𝑅1) | ||
Theorem | nd1 10274 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑦 ∈ 𝑧) | ||
Theorem | nd2 10275 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 1-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑧 ∈ 𝑦) | ||
Theorem | nd3 10276 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | ||
Theorem | nd4 10277 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | ||
Theorem | axextnd 10278 | A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 14-Aug-2003.) (New usage is discouraged.) |
⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | ||
Theorem | axrepndlem1 10279* | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
Theorem | axrepndlem2 10280 | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (New usage is discouraged.) |
⊢ (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
Theorem | axrepnd 10281 | A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
Theorem | axunndlem1 10282* | Lemma for the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axunnd 10283 | A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpowndlem1 10284 | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
Theorem | axpowndlem2 10285* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
Theorem | axpowndlem3 10286* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
Theorem | axpowndlem4 10287 | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)))) | ||
Theorem | axpownd 10288 | A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 4-Jan-2002.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
Theorem | axregndlem1 10289 | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | ||
Theorem | axregndlem2 10290* | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axregnd 10291 | A version of the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axinfndlem1 10292* | Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
⊢ (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
Theorem | axinfnd 10293 | A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
⊢ ∃𝑥(𝑦 ∈ 𝑧 → (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
Theorem | axacndlem1 10294 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem2 10295 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem3 10296 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
⊢ (∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
Theorem | axacndlem4 10297* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | axacndlem5 10298* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | axacnd 10299 | A version of the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
Theorem | zfcndext 10300* | Axiom of Extensionality ax-ext 2709, reproved from conditionless ZFC version and predicate calculus. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |