HomeHome Metamath Proof Explorer
Theorem List (p. 103 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 10201-10300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminfdif2 10201 Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) β†’ ((𝐴 βˆ– 𝐡) β‰Ό 𝐡 ↔ 𝐴 β‰Ό 𝐡))
 
Theoreminfxpdom 10202 Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006.) (Revised by Mario Carneiro, 29-Apr-2015.)
((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴 ∧ 𝐡 β‰Ό 𝐴) β†’ (𝐴 Γ— 𝐡) β‰Ό 𝐴)
 
Theoreminfxpabs 10203 Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) ∧ (𝐡 β‰  βˆ… ∧ 𝐡 β‰Ό 𝐴)) β†’ (𝐴 Γ— 𝐡) β‰ˆ 𝐴)
 
Theoreminfunsdom1 10204 The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 10205 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
(((𝑋 ∈ dom card ∧ Ο‰ β‰Ό 𝑋) ∧ (𝐴 β‰Ό 𝐡 ∧ 𝐡 β‰Ί 𝑋)) β†’ (𝐴 βˆͺ 𝐡) β‰Ί 𝑋)
 
Theoreminfunsdom 10205 The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
(((𝑋 ∈ dom card ∧ Ο‰ β‰Ό 𝑋) ∧ (𝐴 β‰Ί 𝑋 ∧ 𝐡 β‰Ί 𝑋)) β†’ (𝐴 βˆͺ 𝐡) β‰Ί 𝑋)
 
Theoreminfxp 10206 Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(((𝐴 ∈ dom card ∧ Ο‰ β‰Ό 𝐴) ∧ (𝐡 ∈ dom card ∧ 𝐡 β‰  βˆ…)) β†’ (𝐴 Γ— 𝐡) β‰ˆ (𝐴 βˆͺ 𝐡))
 
Theorempwdjudom 10207 A property of dominance over a powerset, and a main lemma for gchac 10672. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
(𝒫 (𝐴 βŠ” 𝐴) β‰Ό (𝐴 βŠ” 𝐡) β†’ 𝒫 𝐴 β‰Ό 𝐡)
 
Theoreminfpss 10208* Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10304. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
(Ο‰ β‰Ό 𝐴 β†’ βˆƒπ‘₯(π‘₯ ⊊ 𝐴 ∧ π‘₯ β‰ˆ 𝐴))
 
Theoreminfmap2 10209* An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 10567 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
((Ο‰ β‰Ό 𝐴 ∧ 𝐡 β‰Ό 𝐴 ∧ (𝐴 ↑m 𝐡) ∈ dom card) β†’ (𝐴 ↑m 𝐡) β‰ˆ {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ 𝐡)})
 
2.6.14  The Ackermann bijection
 
Theoremackbij2lem1 10210 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ 𝒫 𝐴 βŠ† (𝒫 Ο‰ ∩ Fin))
 
Theoremackbij1lem1 10211 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(Β¬ 𝐴 ∈ 𝐡 β†’ (𝐡 ∩ suc 𝐴) = (𝐡 ∩ 𝐴))
 
Theoremackbij1lem2 10212 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴 ∈ 𝐡 β†’ (𝐡 ∩ suc 𝐴) = ({𝐴} βˆͺ (𝐡 ∩ 𝐴)))
 
Theoremackbij1lem3 10213 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ 𝐴 ∈ (𝒫 Ο‰ ∩ Fin))
 
Theoremackbij1lem4 10214 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 19-Nov-2014.)
(𝐴 ∈ Ο‰ β†’ {𝐴} ∈ (𝒫 Ο‰ ∩ Fin))
 
Theoremackbij1lem5 10215 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.)
(𝐴 ∈ Ο‰ β†’ (cardβ€˜π’« suc 𝐴) = ((cardβ€˜π’« 𝐴) +o (cardβ€˜π’« 𝐴)))
 
Theoremackbij1lem6 10216 Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
((𝐴 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐡 ∈ (𝒫 Ο‰ ∩ Fin)) β†’ (𝐴 βˆͺ 𝐡) ∈ (𝒫 Ο‰ ∩ Fin))
 
Theoremackbij1lem7 10217* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 21-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (𝐴 ∈ (𝒫 Ο‰ ∩ Fin) β†’ (πΉβ€˜π΄) = (cardβ€˜βˆͺ 𝑦 ∈ 𝐴 ({𝑦} Γ— 𝒫 𝑦)))
 
Theoremackbij1lem8 10218* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 19-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (𝐴 ∈ Ο‰ β†’ (πΉβ€˜{𝐴}) = (cardβ€˜π’« 𝐴))
 
Theoremackbij1lem9 10219* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 19-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   ((𝐴 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐡 ∈ (𝒫 Ο‰ ∩ Fin) ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ (πΉβ€˜(𝐴 βˆͺ 𝐡)) = ((πΉβ€˜π΄) +o (πΉβ€˜π΅)))
 
Theoremackbij1lem10 10220* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   πΉ:(𝒫 Ο‰ ∩ Fin)βŸΆΟ‰
 
Theoremackbij1lem11 10221* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   ((𝐴 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐡 βŠ† 𝐴) β†’ 𝐡 ∈ (𝒫 Ο‰ ∩ Fin))
 
Theoremackbij1lem12 10222* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   ((𝐡 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐴 βŠ† 𝐡) β†’ (πΉβ€˜π΄) βŠ† (πΉβ€˜π΅))
 
Theoremackbij1lem13 10223* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (πΉβ€˜βˆ…) = βˆ…
 
Theoremackbij1lem14 10224* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (𝐴 ∈ Ο‰ β†’ (πΉβ€˜{𝐴}) = suc (πΉβ€˜π΄))
 
Theoremackbij1lem15 10225* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (((𝐴 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐡 ∈ (𝒫 Ο‰ ∩ Fin)) ∧ (𝑐 ∈ Ο‰ ∧ 𝑐 ∈ 𝐴 ∧ Β¬ 𝑐 ∈ 𝐡)) β†’ Β¬ (πΉβ€˜(𝐴 ∩ suc 𝑐)) = (πΉβ€˜(𝐡 ∩ suc 𝑐)))
 
Theoremackbij1lem16 10226* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   ((𝐴 ∈ (𝒫 Ο‰ ∩ Fin) ∧ 𝐡 ∈ (𝒫 Ο‰ ∩ Fin)) β†’ ((πΉβ€˜π΄) = (πΉβ€˜π΅) β†’ 𝐴 = 𝐡))
 
Theoremackbij1lem17 10227* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   πΉ:(𝒫 Ο‰ ∩ Fin)–1-1β†’Ο‰
 
Theoremackbij1lem18 10228* Lemma for ackbij1 10229. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (𝐴 ∈ (𝒫 Ο‰ ∩ Fin) β†’ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc (πΉβ€˜π΄))
 
Theoremackbij1 10229* The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   πΉ:(𝒫 Ο‰ ∩ Fin)–1-1-ontoβ†’Ο‰
 
Theoremackbij1b 10230* The Ackermann bijection, part 1b: the bijection from ackbij1 10229 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    β‡’   (𝐴 ∈ Ο‰ β†’ (𝐹 β€œ 𝒫 𝐴) = (cardβ€˜π’« 𝐴))
 
Theoremackbij2lem2 10231* Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    &   πΊ = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))    β‡’   (𝐴 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜π΄):(𝑅1β€˜π΄)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜π΄)))
 
Theoremackbij2lem3 10232* Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    &   πΊ = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))    β‡’   (𝐴 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜π΄) βŠ† (rec(𝐺, βˆ…)β€˜suc 𝐴))
 
Theoremackbij2lem4 10233* Lemma for ackbij2 10234. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    &   πΊ = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))    β‡’   (((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) ∧ 𝐡 βŠ† 𝐴) β†’ (rec(𝐺, βˆ…)β€˜π΅) βŠ† (rec(𝐺, βˆ…)β€˜π΄))
 
Theoremackbij2 10234* The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.)
𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))    &   πΊ = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))    &   π» = βˆͺ (rec(𝐺, βˆ…) β€œ Ο‰)    β‡’   π»:βˆͺ (𝑅1 β€œ Ο‰)–1-1-ontoβ†’Ο‰
 
Theoremr1om 10235 The set of hereditarily finite sets is countable. See ackbij2 10234 for an explicit bijection that works without Infinity. See also r1omALT 10767. (Contributed by Stefan O'Rear, 18-Nov-2014.)
(𝑅1β€˜Ο‰) β‰ˆ Ο‰
 
Theoremfictb 10236 A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
(𝐴 ∈ 𝐡 β†’ (𝐴 β‰Ό Ο‰ ↔ (fiβ€˜π΄) β‰Ό Ο‰))
 
2.6.15  Cofinality (without Axiom of Choice)
 
Theoremcflem 10237* A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set 𝐴. (Contributed by NM, 24-Apr-2004.)
(𝐴 ∈ 𝑉 β†’ βˆƒπ‘₯βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)))
 
Theoremcfval 10238* Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
 
Theoremcff 10239 Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013.)
cf:On⟢On
 
Theoremcfub 10240* An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
(cfβ€˜π΄) βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))}
 
Theoremcflm 10241* Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
((𝐴 ∈ 𝐡 ∧ Lim 𝐴) β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
 
Theoremcf0 10242 Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
(cfβ€˜βˆ…) = βˆ…
 
Theoremcardcf 10243 Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
(cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄)
 
Theoremcflecard 10244 Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
(cfβ€˜π΄) βŠ† (cardβ€˜π΄)
 
Theoremcfle 10245 Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
(cfβ€˜π΄) βŠ† 𝐴
 
Theoremcfon 10246 The cofinality of any set is an ordinal (although it only makes sense when 𝐴 is an ordinal). (Contributed by Mario Carneiro, 9-Mar-2013.)
(cfβ€˜π΄) ∈ On
 
Theoremcfeq0 10247 Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
(𝐴 ∈ On β†’ ((cfβ€˜π΄) = βˆ… ↔ 𝐴 = βˆ…))
 
Theoremcfsuc 10248 Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
(𝐴 ∈ On β†’ (cfβ€˜suc 𝐴) = 1o)
 
Theoremcff1 10249* There is always a map from (cfβ€˜π΄) to 𝐴 (this is a stronger condition than the definition, which only presupposes a map from some 𝑦 β‰ˆ (cfβ€˜π΄). (Contributed by Mario Carneiro, 28-Feb-2013.)
(𝐴 ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)–1-1→𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
 
Theoremcfflb 10250* If there is a cofinal map from 𝐡 to 𝐴, then 𝐡 is at least (cfβ€˜π΄). This theorem and cff1 10249 motivate the picture of (cfβ€˜π΄) as the greatest lower bound of the domain of cofinal maps into 𝐴. (Contributed by Mario Carneiro, 28-Feb-2013.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (βˆƒπ‘“(𝑓:𝐡⟢𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝐡 𝑧 βŠ† (π‘“β€˜π‘€)) β†’ (cfβ€˜π΄) βŠ† 𝐡))
 
Theoremcfval2 10251* Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
(𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ π‘₯ 𝑧 βŠ† 𝑀} (cardβ€˜π‘₯))
 
Theoremcoflim 10252* A simpler expression for the cofinality predicate, at a limit ordinal. (Contributed by Mario Carneiro, 28-Feb-2013.)
((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴) β†’ (βˆͺ 𝐡 = 𝐴 ↔ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 π‘₯ βŠ† 𝑦))
 
Theoremcflim3 10253* Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
𝐴 ∈ V    β‡’   (Lim 𝐴 β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯))
 
Theoremcflim2 10254 The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
𝐴 ∈ V    β‡’   (Lim 𝐴 ↔ Lim (cfβ€˜π΄))
 
Theoremcfom 10255 Value of the cofinality function at omega (the set of natural numbers). Exercise 4 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Proof shortened by Mario Carneiro, 11-Jun-2015.)
(cfβ€˜Ο‰) = Ο‰
 
Theoremcfss 10256* There is a cofinal subset of 𝐴 of cardinality (cfβ€˜π΄). (Contributed by Mario Carneiro, 24-Jun-2013.)
𝐴 ∈ V    β‡’   (Lim 𝐴 β†’ βˆƒπ‘₯(π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴))
 
Theoremcfslb 10257 Any cofinal subset of 𝐴 is at least as large as (cfβ€˜π΄). (Contributed by Mario Carneiro, 24-Jun-2013.)
𝐴 ∈ V    β‡’   ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ βˆͺ 𝐡 = 𝐴) β†’ (cfβ€˜π΄) β‰Ό 𝐡)
 
Theoremcfslbn 10258 Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 10257.) (Contributed by Mario Carneiro, 24-Jun-2013.)
𝐴 ∈ V    β‡’   ((Lim 𝐴 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐡 β‰Ί (cfβ€˜π΄)) β†’ βˆͺ 𝐡 ∈ 𝐴)
 
Theoremcfslb2n 10259* Any small collection of small subsets of 𝐴 cannot have union 𝐴, where "small" means smaller than the cofinality. This is a stronger version of cfslb 10257. This is a common application of cofinality: under AC, (β„΅β€˜1) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
𝐴 ∈ V    β‡’   ((Lim 𝐴 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰Ί (cfβ€˜π΄))) β†’ (𝐡 β‰Ί (cfβ€˜π΄) β†’ βˆͺ 𝐡 β‰  𝐴))
 
Theoremcofsmo 10260* Any cofinal map implies the existence of a strictly monotone cofinal map with a domain no larger than the original. Proposition 11.7 of [TakeutiZaring] p. 101. (Contributed by Mario Carneiro, 20-Mar-2013.)
𝐢 = {𝑦 ∈ 𝐡 ∣ βˆ€π‘€ ∈ 𝑦 (π‘“β€˜π‘€) ∈ (π‘“β€˜π‘¦)}    &   πΎ = ∩ {π‘₯ ∈ 𝐡 ∣ 𝑧 βŠ† (π‘“β€˜π‘₯)}    &   π‘‚ = OrdIso( E , 𝐢)    β‡’   ((Ord 𝐴 ∧ 𝐡 ∈ On) β†’ (βˆƒπ‘“(𝑓:𝐡⟢𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝐡 𝑧 βŠ† (π‘“β€˜π‘€)) β†’ βˆƒπ‘₯ ∈ suc π΅βˆƒπ‘”(𝑔:π‘₯⟢𝐴 ∧ Smo 𝑔 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘£ ∈ π‘₯ 𝑧 βŠ† (π‘”β€˜π‘£))))
 
Theoremcfsmolem 10261* Lemma for cfsmo 10262. (Contributed by Mario Carneiro, 28-Feb-2013.)
𝐹 = (𝑧 ∈ V ↦ ((π‘”β€˜dom 𝑧) βˆͺ βˆͺ 𝑑 ∈ dom 𝑧 suc (π‘§β€˜π‘‘)))    &   πΊ = (recs(𝐹) β†Ύ (cfβ€˜π΄))    β‡’   (𝐴 ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)⟢𝐴 ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
 
Theoremcfsmo 10262* The map in cff1 10249 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013.)
(𝐴 ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜π΄)⟢𝐴 ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ (cfβ€˜π΄)𝑧 βŠ† (π‘“β€˜π‘€)))
 
Theoremcfcoflem 10263* Lemma for cfcof 10265, showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (βˆƒπ‘“(𝑓:𝐡⟢𝐴 ∧ Smo 𝑓 ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 π‘₯ βŠ† (π‘“β€˜π‘¦)) β†’ (cfβ€˜π΄) βŠ† (cfβ€˜π΅)))
 
Theoremcoftr 10264* If there is a cofinal map from 𝐡 to 𝐴 and another from 𝐢 to 𝐴, then there is also a cofinal map from 𝐢 to 𝐡. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 10265. (Contributed by Mario Carneiro, 16-Mar-2013.)
𝐻 = (𝑑 ∈ 𝐢 ↦ ∩ {𝑛 ∈ 𝐡 ∣ (π‘”β€˜π‘‘) βŠ† (π‘“β€˜π‘›)})    β‡’   (βˆƒπ‘“(𝑓:𝐡⟢𝐴 ∧ Smo 𝑓 ∧ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 π‘₯ βŠ† (π‘“β€˜π‘¦)) β†’ (βˆƒπ‘”(𝑔:𝐢⟢𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝐢 𝑧 βŠ† (π‘”β€˜π‘€)) β†’ βˆƒβ„Ž(β„Ž:𝐢⟢𝐡 ∧ βˆ€π‘  ∈ 𝐡 βˆƒπ‘€ ∈ 𝐢 𝑠 βŠ† (β„Žβ€˜π‘€))))
 
Theoremcfcof 10265* If there is a cofinal map from 𝐴 to 𝐡, then they have the same cofinality. This was used as Definition 11.1 of [TakeutiZaring] p. 100, who defines an equivalence relation cof (𝐴, 𝐡) and defines our cf(𝐡) as the minimum 𝐡 such that cof (𝐴, 𝐡). (Contributed by Mario Carneiro, 20-Mar-2013.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (βˆƒπ‘“(𝑓:𝐡⟢𝐴 ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝐡 𝑧 βŠ† (π‘“β€˜π‘€)) β†’ (cfβ€˜π΄) = (cfβ€˜π΅)))
 
Theoremcfidm 10266 The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
(cfβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄)
 
Theoremalephsing 10267 The cofinality of a limit aleph is the same as the cofinality of its argument, so if (β„΅β€˜π΄) < 𝐴, then (β„΅β€˜π΄) is singular. Conversely, if (β„΅β€˜π΄) is regular (i.e. weakly inaccessible), then (β„΅β€˜π΄) = 𝐴, so 𝐴 has to be rather large (see alephfp 10099). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
(Lim 𝐴 β†’ (cfβ€˜(β„΅β€˜π΄)) = (cfβ€˜π΄))
 
2.6.16  Eight inequivalent definitions of finite set
 
Theoremsornom 10268* The range of a single-step monotone function from Ο‰ into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014.)
((𝐹 Fn Ο‰ ∧ βˆ€π‘Ž ∈ Ο‰ ((πΉβ€˜π‘Ž)𝑅(πΉβ€˜suc π‘Ž) ∨ (πΉβ€˜π‘Ž) = (πΉβ€˜suc π‘Ž)) ∧ 𝑅 Po ran 𝐹) β†’ 𝑅 Or ran 𝐹)
 
Syntaxcfin1a 10269 Extend class notation to include the class of Ia-finite sets.
class FinIa
 
Syntaxcfin2 10270 Extend class notation to include the class of II-finite sets.
class FinII
 
Syntaxcfin4 10271 Extend class notation to include the class of IV-finite sets.
class FinIV
 
Syntaxcfin3 10272 Extend class notation to include the class of III-finite sets.
class FinIII
 
Syntaxcfin5 10273 Extend class notation to include the class of V-finite sets.
class FinV
 
Syntaxcfin6 10274 Extend class notation to include the class of VI-finite sets.
class FinVI
 
Syntaxcfin7 10275 Extend class notation to include the class of VII-finite sets.
class FinVII
 
Definitiondf-fin1a 10276* A set is Ia-finite iff it is not the union of two I-infinite sets. Equivalent to definition Ia of [Levy58] p. 2. A I-infinite Ia-finite set is also known as an amorphous set. This is the second of Levy's eight definitions of finite set. Levy's I-finite is equivalent to our df-fin 8939 and not repeated here. These eight definitions are equivalent with Choice but strictly decreasing in strength in models where Choice fails; conversely, they provide a series of increasingly stronger notions of infiniteness. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinIa = {π‘₯ ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(𝑦 ∈ Fin ∨ (π‘₯ βˆ– 𝑦) ∈ Fin)}
 
Definitiondf-fin2 10277* A set is II-finite (Tarski finite) iff every nonempty chain of subsets contains a maximum element. Definition II of [Levy58] p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinII = {π‘₯ ∣ βˆ€π‘¦ ∈ 𝒫 𝒫 π‘₯((𝑦 β‰  βˆ… ∧ [⊊] Or 𝑦) β†’ βˆͺ 𝑦 ∈ 𝑦)}
 
Definitiondf-fin4 10278* A set is IV-finite (Dedekind finite) iff it has no equinumerous proper subset. Definition IV of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinIV = {π‘₯ ∣ Β¬ βˆƒπ‘¦(𝑦 ⊊ π‘₯ ∧ 𝑦 β‰ˆ π‘₯)}
 
Definitiondf-fin3 10279 A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of [Levy58] p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinIII = {π‘₯ ∣ 𝒫 π‘₯ ∈ FinIV}
 
Definitiondf-fin5 10280 A set is V-finite iff it behaves finitely under βŠ”. Definition V of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinV = {π‘₯ ∣ (π‘₯ = βˆ… ∨ π‘₯ β‰Ί (π‘₯ βŠ” π‘₯))}
 
Definitiondf-fin6 10281 A set is VI-finite iff it behaves finitely under Γ—. Definition VI of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinVI = {π‘₯ ∣ (π‘₯ β‰Ί 2o ∨ π‘₯ β‰Ί (π‘₯ Γ— π‘₯))}
 
Definitiondf-fin7 10282* A set is VII-finite iff it cannot be infinitely well-ordered. Equivalent to definition VII of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.)
FinVII = {π‘₯ ∣ Β¬ βˆƒπ‘¦ ∈ (On βˆ– Ο‰)π‘₯ β‰ˆ 𝑦}
 
Theoremisfin1a 10283* Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ 𝑉 β†’ (𝐴 ∈ FinIa ↔ βˆ€π‘¦ ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 βˆ– 𝑦) ∈ Fin)))
 
Theoremfin1ai 10284 Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
((𝐴 ∈ FinIa ∧ 𝑋 βŠ† 𝐴) β†’ (𝑋 ∈ Fin ∨ (𝐴 βˆ– 𝑋) ∈ Fin))
 
Theoremisfin2 10285* Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ 𝑉 β†’ (𝐴 ∈ FinII ↔ βˆ€π‘¦ ∈ 𝒫 𝒫 𝐴((𝑦 β‰  βˆ… ∧ [⊊] Or 𝑦) β†’ βˆͺ 𝑦 ∈ 𝑦)))
 
Theoremfin2i 10286 Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(((𝐴 ∈ FinII ∧ 𝐡 βŠ† 𝒫 𝐴) ∧ (𝐡 β‰  βˆ… ∧ [⊊] Or 𝐡)) β†’ βˆͺ 𝐡 ∈ 𝐡)
 
Theoremisfin3 10287 Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
 
Theoremisfin4 10288* Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ 𝑉 β†’ (𝐴 ∈ FinIV ↔ Β¬ βˆƒπ‘¦(𝑦 ⊊ 𝐴 ∧ 𝑦 β‰ˆ 𝐴)))
 
Theoremfin4i 10289 Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.)
((𝑋 ⊊ 𝐴 ∧ 𝑋 β‰ˆ 𝐴) β†’ Β¬ 𝐴 ∈ FinIV)
 
Theoremisfin5 10290 Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ FinV ↔ (𝐴 = βˆ… ∨ 𝐴 β‰Ί (𝐴 βŠ” 𝐴)))
 
Theoremisfin6 10291 Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ FinVI ↔ (𝐴 β‰Ί 2o ∨ 𝐴 β‰Ί (𝐴 Γ— 𝐴)))
 
Theoremisfin7 10292* Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
(𝐴 ∈ 𝑉 β†’ (𝐴 ∈ FinVII ↔ Β¬ βˆƒπ‘¦ ∈ (On βˆ– Ο‰)𝐴 β‰ˆ 𝑦))
 
Theoremsdom2en01 10293 A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(𝐴 β‰Ί 2o ↔ (𝐴 = βˆ… ∨ 𝐴 β‰ˆ 1o))
 
Theoreminfpssrlem1 10294 Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴 βˆ– 𝐡))    &   πΊ = (rec(◑𝐹, 𝐢) β†Ύ Ο‰)    β‡’   (πœ‘ β†’ (πΊβ€˜βˆ…) = 𝐢)
 
Theoreminfpssrlem2 10295 Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴 βˆ– 𝐡))    &   πΊ = (rec(◑𝐹, 𝐢) β†Ύ Ο‰)    β‡’   (𝑀 ∈ Ο‰ β†’ (πΊβ€˜suc 𝑀) = (β—‘πΉβ€˜(πΊβ€˜π‘€)))
 
Theoreminfpssrlem3 10296 Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴 βˆ– 𝐡))    &   πΊ = (rec(◑𝐹, 𝐢) β†Ύ Ο‰)    β‡’   (πœ‘ β†’ 𝐺:Ο‰βŸΆπ΄)
 
Theoreminfpssrlem4 10297 Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴 βˆ– 𝐡))    &   πΊ = (rec(◑𝐹, 𝐢) β†Ύ Ο‰)    β‡’   ((πœ‘ ∧ 𝑀 ∈ Ο‰ ∧ 𝑁 ∈ 𝑀) β†’ (πΊβ€˜π‘€) β‰  (πΊβ€˜π‘))
 
Theoreminfpssrlem5 10298 Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.)
(πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐹:𝐡–1-1-onto→𝐴)    &   (πœ‘ β†’ 𝐢 ∈ (𝐴 βˆ– 𝐡))    &   πΊ = (rec(◑𝐹, 𝐢) β†Ύ Ο‰)    β‡’   (πœ‘ β†’ (𝐴 ∈ 𝑉 β†’ Ο‰ β‰Ό 𝐴))
 
Theoreminfpssr 10299 Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
((𝑋 ⊊ 𝐴 ∧ 𝑋 β‰ˆ 𝐴) β†’ Ο‰ β‰Ό 𝐴)
 
Theoremfin4en1 10300 Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
(𝐴 β‰ˆ 𝐡 β†’ (𝐴 ∈ FinIV β†’ 𝐡 ∈ FinIV))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >