MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Structured version   Visualization version   GIF version

Theorem isfin5 10290
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))

Proof of Theorem isfin5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin5 10280 . . 3 FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))}
21eleq2i 2825 . 2 (𝐴 ∈ FinV𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))})
3 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
4 0ex 5306 . . . . 5 ∅ ∈ V
53, 4eqeltrdi 2841 . . . 4 (𝐴 = ∅ → 𝐴 ∈ V)
6 relsdom 8942 . . . . 5 Rel ≺
76brrelex1i 5730 . . . 4 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
85, 7jaoi 855 . . 3 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → 𝐴 ∈ V)
9 eqeq1 2736 . . . 4 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
11 djueq12 9895 . . . . . 6 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑥) = (𝐴𝐴))
1211anidms 567 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥) = (𝐴𝐴))
1310, 12breq12d 5160 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥𝑥) ↔ 𝐴 ≺ (𝐴𝐴)))
149, 13orbi12d 917 . . 3 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴))))
158, 14elab3 3675 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
162, 15bitri 274 1 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1541  wcel 2106  {cab 2709  Vcvv 3474  c0 4321   class class class wbr 5147  csdm 8934  cdju 9889  FinVcfin5 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-dom 8937  df-sdom 8938  df-dju 9892  df-fin5 10280
This theorem is referenced by:  isfin5-2  10382  fin56  10384
  Copyright terms: Public domain W3C validator