| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin5 | Structured version Visualization version GIF version | ||
| Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin5 | ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin5 10180 | . . 3 ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ FinV ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))}) |
| 3 | id 22 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 4 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | eqeltrdi 2839 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 6 | relsdom 8876 | . . . . 5 ⊢ Rel ≺ | |
| 7 | 6 | brrelex1i 5670 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
| 8 | 5, 7 | jaoi 857 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
| 9 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
| 10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 11 | djueq12 9797 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 ⊔ 𝑥) = (𝐴 ⊔ 𝐴)) | |
| 12 | 11 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊔ 𝑥) = (𝐴 ⊔ 𝐴)) |
| 13 | 10, 12 | breq12d 5102 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 ⊔ 𝑥) ↔ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
| 14 | 9, 13 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)))) |
| 15 | 8, 14 | elab3 3637 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
| 16 | 2, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ≺ csdm 8868 ⊔ cdju 9791 FinVcfin5 10173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dom 8871 df-sdom 8872 df-dju 9794 df-fin5 10180 |
| This theorem is referenced by: isfin5-2 10282 fin56 10284 |
| Copyright terms: Public domain | W3C validator |