Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin5 | Structured version Visualization version GIF version |
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin5 | ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin5 10095 | . . 3 ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ FinV ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))}) |
3 | id 22 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
4 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | eqeltrdi 2845 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
6 | relsdom 8771 | . . . . 5 ⊢ Rel ≺ | |
7 | 6 | brrelex1i 5654 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 𝐴) → 𝐴 ∈ V) |
8 | 5, 7 | jaoi 855 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)) → 𝐴 ∈ V) |
9 | eqeq1 2740 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
11 | djueq12 9710 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 ⊔ 𝑥) = (𝐴 ⊔ 𝐴)) | |
12 | 11 | anidms 568 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊔ 𝑥) = (𝐴 ⊔ 𝐴)) |
13 | 10, 12 | breq12d 5094 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 ⊔ 𝑥) ↔ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
14 | 9, 13 | orbi12d 917 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴)))) |
15 | 8, 14 | elab3 3622 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
16 | 2, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 ⊔ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1539 ∈ wcel 2104 {cab 2713 Vcvv 3437 ∅c0 4262 class class class wbr 5081 ≺ csdm 8763 ⊔ cdju 9704 FinVcfin5 10088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-dom 8766 df-sdom 8767 df-dju 9707 df-fin5 10095 |
This theorem is referenced by: isfin5-2 10197 fin56 10199 |
Copyright terms: Public domain | W3C validator |