MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Structured version   Visualization version   GIF version

Theorem isfin5 10296
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))

Proof of Theorem isfin5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin5 10286 . . 3 FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))}
21eleq2i 2825 . 2 (𝐴 ∈ FinV𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))})
3 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
4 0ex 5307 . . . . 5 ∅ ∈ V
53, 4eqeltrdi 2841 . . . 4 (𝐴 = ∅ → 𝐴 ∈ V)
6 relsdom 8948 . . . . 5 Rel ≺
76brrelex1i 5732 . . . 4 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
85, 7jaoi 855 . . 3 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → 𝐴 ∈ V)
9 eqeq1 2736 . . . 4 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
11 djueq12 9901 . . . . . 6 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑥) = (𝐴𝐴))
1211anidms 567 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥) = (𝐴𝐴))
1310, 12breq12d 5161 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥𝑥) ↔ 𝐴 ≺ (𝐴𝐴)))
149, 13orbi12d 917 . . 3 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴))))
158, 14elab3 3676 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
162, 15bitri 274 1 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1541  wcel 2106  {cab 2709  Vcvv 3474  c0 4322   class class class wbr 5148  csdm 8940  cdju 9895  FinVcfin5 10279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dom 8943  df-sdom 8944  df-dju 9898  df-fin5 10286
This theorem is referenced by:  isfin5-2  10388  fin56  10390
  Copyright terms: Public domain W3C validator