MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Structured version   Visualization version   GIF version

Theorem isfin5 9436
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))

Proof of Theorem isfin5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin5 9426 . . 3 FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))}
21eleq2i 2898 . 2 (𝐴 ∈ FinV𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))})
3 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
4 0ex 5014 . . . . 5 ∅ ∈ V
53, 4syl6eqel 2914 . . . 4 (𝐴 = ∅ → 𝐴 ∈ V)
6 relsdom 8229 . . . . 5 Rel ≺
76brrelex1i 5393 . . . 4 (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V)
85, 7jaoi 888 . . 3 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → 𝐴 ∈ V)
9 eqeq1 2829 . . . 4 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1110, 10oveq12d 6923 . . . . 5 (𝑥 = 𝐴 → (𝑥 +𝑐 𝑥) = (𝐴 +𝑐 𝐴))
1210, 11breq12d 4886 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 +𝑐 𝑥) ↔ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
139, 12orbi12d 947 . . 3 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))))
148, 13elab3 3579 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
152, 14bitri 267 1 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wo 878   = wceq 1656  wcel 2164  {cab 2811  Vcvv 3414  c0 4144   class class class wbr 4873  (class class class)co 6905  csdm 8221   +𝑐 ccda 9304  FinVcfin5 9419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-xp 5348  df-rel 5349  df-iota 6086  df-fv 6131  df-ov 6908  df-dom 8224  df-sdom 8225  df-fin5 9426
This theorem is referenced by:  isfin5-2  9528  fin56  9530
  Copyright terms: Public domain W3C validator