MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Structured version   Visualization version   GIF version

Theorem isfin5 10337
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))

Proof of Theorem isfin5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin5 10327 . . 3 FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))}
21eleq2i 2831 . 2 (𝐴 ∈ FinV𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))})
3 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
4 0ex 5313 . . . . 5 ∅ ∈ V
53, 4eqeltrdi 2847 . . . 4 (𝐴 = ∅ → 𝐴 ∈ V)
6 relsdom 8991 . . . . 5 Rel ≺
76brrelex1i 5745 . . . 4 (𝐴 ≺ (𝐴𝐴) → 𝐴 ∈ V)
85, 7jaoi 857 . . 3 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)) → 𝐴 ∈ V)
9 eqeq1 2739 . . . 4 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
11 djueq12 9942 . . . . . 6 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑥) = (𝐴𝐴))
1211anidms 566 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥) = (𝐴𝐴))
1310, 12breq12d 5161 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥𝑥) ↔ 𝐴 ≺ (𝐴𝐴)))
149, 13orbi12d 918 . . 3 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴))))
158, 14elab3 3689 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
162, 15bitri 275 1 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1537  wcel 2106  {cab 2712  Vcvv 3478  c0 4339   class class class wbr 5148  csdm 8983  cdju 9936  FinVcfin5 10320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-dom 8986  df-sdom 8987  df-dju 9939  df-fin5 10327
This theorem is referenced by:  isfin5-2  10429  fin56  10431
  Copyright terms: Public domain W3C validator