![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin5 | Structured version Visualization version GIF version |
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin5 | ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin5 9426 | . . 3 ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} | |
2 | 1 | eleq2i 2898 | . 2 ⊢ (𝐴 ∈ FinV ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))}) |
3 | id 22 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
4 | 0ex 5014 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | syl6eqel 2914 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
6 | relsdom 8229 | . . . . 5 ⊢ Rel ≺ | |
7 | 6 | brrelex1i 5393 | . . . 4 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V) |
8 | 5, 7 | jaoi 888 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → 𝐴 ∈ V) |
9 | eqeq1 2829 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
11 | 10, 10 | oveq12d 6923 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +𝑐 𝑥) = (𝐴 +𝑐 𝐴)) |
12 | 10, 11 | breq12d 4886 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 +𝑐 𝑥) ↔ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
13 | 9, 12 | orbi12d 947 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))) |
14 | 8, 13 | elab3 3579 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
15 | 2, 14 | bitri 267 | 1 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 878 = wceq 1656 ∈ wcel 2164 {cab 2811 Vcvv 3414 ∅c0 4144 class class class wbr 4873 (class class class)co 6905 ≺ csdm 8221 +𝑐 ccda 9304 FinVcfin5 9419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-xp 5348 df-rel 5349 df-iota 6086 df-fv 6131 df-ov 6908 df-dom 8224 df-sdom 8225 df-fin5 9426 |
This theorem is referenced by: isfin5-2 9528 fin56 9530 |
Copyright terms: Public domain | W3C validator |