Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fin6 | Structured version Visualization version GIF version |
Description: A set is VI-finite iff it behaves finitely under ×. Definition VI of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
Ref | Expression |
---|---|
df-fin6 | ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfin6 9970 | . 2 class FinVI | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑥 |
4 | c2o 8261 | . . . . 5 class 2o | |
5 | csdm 8690 | . . . . 5 class ≺ | |
6 | 3, 4, 5 | wbr 5070 | . . . 4 wff 𝑥 ≺ 2o |
7 | 3, 3 | cxp 5578 | . . . . 5 class (𝑥 × 𝑥) |
8 | 3, 7, 5 | wbr 5070 | . . . 4 wff 𝑥 ≺ (𝑥 × 𝑥) |
9 | 6, 8 | wo 843 | . . 3 wff (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥)) |
10 | 9, 2 | cab 2715 | . 2 class {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} |
11 | 1, 10 | wceq 1539 | 1 wff FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} |
Colors of variables: wff setvar class |
This definition is referenced by: isfin6 9987 |
Copyright terms: Public domain | W3C validator |