|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-fin6 | Structured version Visualization version GIF version | ||
| Description: A set is VI-finite iff it behaves finitely under ×. Definition VI of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| df-fin6 | ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cfin6 10324 | . 2 class FinVI | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1538 | . . . . 5 class 𝑥 | 
| 4 | c2o 8501 | . . . . 5 class 2o | |
| 5 | csdm 8985 | . . . . 5 class ≺ | |
| 6 | 3, 4, 5 | wbr 5142 | . . . 4 wff 𝑥 ≺ 2o | 
| 7 | 3, 3 | cxp 5682 | . . . . 5 class (𝑥 × 𝑥) | 
| 8 | 3, 7, 5 | wbr 5142 | . . . 4 wff 𝑥 ≺ (𝑥 × 𝑥) | 
| 9 | 6, 8 | wo 847 | . . 3 wff (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥)) | 
| 10 | 9, 2 | cab 2713 | . 2 class {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | 
| 11 | 1, 10 | wceq 1539 | 1 wff FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: isfin6 10341 | 
| Copyright terms: Public domain | W3C validator |