Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fin6 Structured version   Visualization version   GIF version

Definition df-fin6 9710
 Description: A set is VI-finite iff it behaves finitely under ×. Definition VI of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Assertion
Ref Expression
df-fin6 FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}

Detailed syntax breakdown of Definition df-fin6
StepHypRef Expression
1 cfin6 9703 . 2 class FinVI
2 vx . . . . . 6 setvar 𝑥
32cv 1537 . . . . 5 class 𝑥
4 c2o 8092 . . . . 5 class 2o
5 csdm 8504 . . . . 5 class
63, 4, 5wbr 5052 . . . 4 wff 𝑥 ≺ 2o
73, 3cxp 5540 . . . . 5 class (𝑥 × 𝑥)
83, 7, 5wbr 5052 . . . 4 wff 𝑥 ≺ (𝑥 × 𝑥)
96, 8wo 844 . . 3 wff (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))
109, 2cab 2802 . 2 class {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
111, 10wceq 1538 1 wff FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
 Colors of variables: wff setvar class This definition is referenced by:  isfin6  9720
 Copyright terms: Public domain W3C validator