MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin6 Structured version   Visualization version   GIF version

Theorem isfin6 10260
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin6 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))

Proof of Theorem isfin6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin6 10250 . . 3 FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
21eleq2i 2821 . 2 (𝐴 ∈ FinVI𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))})
3 relsdom 8928 . . . . 5 Rel ≺
43brrelex1i 5697 . . . 4 (𝐴 ≺ 2o𝐴 ∈ V)
53brrelex1i 5697 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
64, 5jaoi 857 . . 3 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V)
7 breq1 5113 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ 2o𝐴 ≺ 2o))
8 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
98sqxpeqd 5673 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴))
108, 9breq12d 5123 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴)))
117, 10orbi12d 918 . . 3 (𝑥 = 𝐴 → ((𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴))))
126, 11elab3 3656 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
132, 12bitri 275 1 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450   class class class wbr 5110   × cxp 5639  2oc2o 8431  csdm 8920  FinVIcfin6 10243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dom 8923  df-sdom 8924  df-fin6 10250
This theorem is referenced by:  fin56  10353  fin67  10355
  Copyright terms: Public domain W3C validator