![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin6 | Structured version Visualization version GIF version |
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin6 | ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin6 10328 | . . 3 ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ FinVI ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))}) |
3 | relsdom 8991 | . . . . 5 ⊢ Rel ≺ | |
4 | 3 | brrelex1i 5745 | . . . 4 ⊢ (𝐴 ≺ 2o → 𝐴 ∈ V) |
5 | 3 | brrelex1i 5745 | . . . 4 ⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V) |
6 | 4, 5 | jaoi 857 | . . 3 ⊢ ((𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V) |
7 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 2o ↔ 𝐴 ≺ 2o)) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
9 | 8 | sqxpeqd 5721 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴)) |
10 | 8, 9 | breq12d 5161 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴))) |
11 | 7, 10 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)))) |
12 | 6, 11 | elab3 3689 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
13 | 2, 12 | bitri 275 | 1 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 class class class wbr 5148 × cxp 5687 2oc2o 8499 ≺ csdm 8983 FinVIcfin6 10321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dom 8986 df-sdom 8987 df-fin6 10328 |
This theorem is referenced by: fin56 10431 fin67 10433 |
Copyright terms: Public domain | W3C validator |