MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin6 Structured version   Visualization version   GIF version

Theorem isfin6 10295
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin6 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))

Proof of Theorem isfin6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin6 10285 . . 3 FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
21eleq2i 2826 . 2 (𝐴 ∈ FinVI𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))})
3 relsdom 8946 . . . . 5 Rel ≺
43brrelex1i 5733 . . . 4 (𝐴 ≺ 2o𝐴 ∈ V)
53brrelex1i 5733 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
64, 5jaoi 856 . . 3 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V)
7 breq1 5152 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ 2o𝐴 ≺ 2o))
8 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
98sqxpeqd 5709 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴))
108, 9breq12d 5162 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴)))
117, 10orbi12d 918 . . 3 (𝑥 = 𝐴 → ((𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴))))
126, 11elab3 3677 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
132, 12bitri 275 1 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 846   = wceq 1542  wcel 2107  {cab 2710  Vcvv 3475   class class class wbr 5149   × cxp 5675  2oc2o 8460  csdm 8938  FinVIcfin6 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dom 8941  df-sdom 8942  df-fin6 10285
This theorem is referenced by:  fin56  10388  fin67  10390
  Copyright terms: Public domain W3C validator