MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin6 Structured version   Visualization version   GIF version

Theorem isfin6 10253
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin6 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))

Proof of Theorem isfin6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin6 10243 . . 3 FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
21eleq2i 2820 . 2 (𝐴 ∈ FinVI𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))})
3 relsdom 8925 . . . . 5 Rel ≺
43brrelex1i 5694 . . . 4 (𝐴 ≺ 2o𝐴 ∈ V)
53brrelex1i 5694 . . . 4 (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V)
64, 5jaoi 857 . . 3 ((𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V)
7 breq1 5110 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ 2o𝐴 ≺ 2o))
8 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
98sqxpeqd 5670 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴))
108, 9breq12d 5120 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴)))
117, 10orbi12d 918 . . 3 (𝑥 = 𝐴 → ((𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴))))
126, 11elab3 3653 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
132, 12bitri 275 1 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o𝐴 ≺ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447   class class class wbr 5107   × cxp 5636  2oc2o 8428  csdm 8917  FinVIcfin6 10236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dom 8920  df-sdom 8921  df-fin6 10243
This theorem is referenced by:  fin56  10346  fin67  10348
  Copyright terms: Public domain W3C validator