| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin6 | Structured version Visualization version GIF version | ||
| Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin6 | ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin6 10309 | . . 3 ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ FinVI ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))}) |
| 3 | relsdom 8971 | . . . . 5 ⊢ Rel ≺ | |
| 4 | 3 | brrelex1i 5715 | . . . 4 ⊢ (𝐴 ≺ 2o → 𝐴 ∈ V) |
| 5 | 3 | brrelex1i 5715 | . . . 4 ⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V) |
| 6 | 4, 5 | jaoi 857 | . . 3 ⊢ ((𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V) |
| 7 | breq1 5127 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 2o ↔ 𝐴 ≺ 2o)) | |
| 8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 9 | 8 | sqxpeqd 5691 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴)) |
| 10 | 8, 9 | breq12d 5137 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴))) |
| 11 | 7, 10 | orbi12d 918 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)))) |
| 12 | 6, 11 | elab3 3670 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 13 | 2, 12 | bitri 275 | 1 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 class class class wbr 5124 × cxp 5657 2oc2o 8479 ≺ csdm 8963 FinVIcfin6 10302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dom 8966 df-sdom 8967 df-fin6 10309 |
| This theorem is referenced by: fin56 10412 fin67 10414 |
| Copyright terms: Public domain | W3C validator |