Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin6 | Structured version Visualization version GIF version |
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin6 | ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin6 10056 | . . 3 ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ FinVI ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))}) |
3 | relsdom 8727 | . . . . 5 ⊢ Rel ≺ | |
4 | 3 | brrelex1i 5638 | . . . 4 ⊢ (𝐴 ≺ 2o → 𝐴 ∈ V) |
5 | 3 | brrelex1i 5638 | . . . 4 ⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V) |
6 | 4, 5 | jaoi 854 | . . 3 ⊢ ((𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ V) |
7 | breq1 5076 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 2o ↔ 𝐴 ≺ 2o)) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
9 | 8 | sqxpeqd 5616 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴)) |
10 | 8, 9 | breq12d 5086 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 × 𝑥) ↔ 𝐴 ≺ (𝐴 × 𝐴))) |
11 | 7, 10 | orbi12d 916 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥)) ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴)))) |
12 | 6, 11 | elab3 3616 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
13 | 2, 12 | bitri 274 | 1 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2o ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 {cab 2715 Vcvv 3429 class class class wbr 5073 × cxp 5582 2oc2o 8278 ≺ csdm 8719 FinVIcfin6 10049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5074 df-opab 5136 df-xp 5590 df-rel 5591 df-dom 8722 df-sdom 8723 df-fin6 10056 |
This theorem is referenced by: fin56 10159 fin67 10161 |
Copyright terms: Public domain | W3C validator |