|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-fin7 | Structured version Visualization version GIF version | ||
| Description: A set is VII-finite iff it cannot be infinitely well-ordered. Equivalent to definition VII of [Levy58] p. 4. (Contributed by Stefan O'Rear, 12-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| df-fin7 | ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cfin7 10325 | . 2 class FinVII | |
| 2 | vx | . . . . . . 7 setvar 𝑥 | |
| 3 | 2 | cv 1538 | . . . . . 6 class 𝑥 | 
| 4 | vy | . . . . . . 7 setvar 𝑦 | |
| 5 | 4 | cv 1538 | . . . . . 6 class 𝑦 | 
| 6 | cen 8983 | . . . . . 6 class ≈ | |
| 7 | 3, 5, 6 | wbr 5142 | . . . . 5 wff 𝑥 ≈ 𝑦 | 
| 8 | con0 6383 | . . . . . 6 class On | |
| 9 | com 7888 | . . . . . 6 class ω | |
| 10 | 8, 9 | cdif 3947 | . . . . 5 class (On ∖ ω) | 
| 11 | 7, 4, 10 | wrex 3069 | . . . 4 wff ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 | 
| 12 | 11 | wn 3 | . . 3 wff ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 | 
| 13 | 12, 2 | cab 2713 | . 2 class {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | 
| 14 | 1, 13 | wceq 1539 | 1 wff FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: isfin7 10342 | 
| Copyright terms: Public domain | W3C validator |