MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7 Structured version   Visualization version   GIF version

Theorem isfin7 10230
Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin7 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin7
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5105 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
21rexbidv 3157 . . 3 (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
32notbid 318 . 2 (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
4 df-fin7 10220 . 2 FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦}
53, 4elab2g 3644 1 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  cdif 3908   class class class wbr 5102  Oncon0 6320  ωcom 7822  cen 8892  FinVIIcfin7 10213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-fin7 10220
This theorem is referenced by:  fin17  10323  fin67  10324  isfin7-2  10325
  Copyright terms: Public domain W3C validator