| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin7 | Structured version Visualization version GIF version | ||
| Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin7 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝐴 ≈ 𝑦)) | |
| 2 | 1 | rexbidv 3153 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
| 4 | df-fin7 10185 | . 2 ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | |
| 5 | 3, 4 | elab2g 3636 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3900 class class class wbr 5092 Oncon0 6307 ωcom 7799 ≈ cen 8869 FinVIIcfin7 10178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-fin7 10185 |
| This theorem is referenced by: fin17 10288 fin67 10289 isfin7-2 10290 |
| Copyright terms: Public domain | W3C validator |