MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7 Structured version   Visualization version   GIF version

Theorem isfin7 10342
Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin7 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin7
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5145 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
21rexbidv 3178 . . 3 (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
32notbid 318 . 2 (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
4 df-fin7 10332 . 2 FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦}
53, 4elab2g 3679 1 (𝐴𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2107  wrex 3069  cdif 3947   class class class wbr 5142  Oncon0 6383  ωcom 7888  cen 8983  FinVIIcfin7 10325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-fin7 10332
This theorem is referenced by:  fin17  10435  fin67  10436  isfin7-2  10437
  Copyright terms: Public domain W3C validator