![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin7 | Structured version Visualization version GIF version |
Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin7 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝐴 ≈ 𝑦)) | |
2 | 1 | rexbidv 3177 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
4 | df-fin7 10292 | . 2 ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | |
5 | 3, 4 | elab2g 3670 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∖ cdif 3945 class class class wbr 5148 Oncon0 6364 ωcom 7859 ≈ cen 8942 FinVIIcfin7 10285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-fin7 10292 |
This theorem is referenced by: fin17 10395 fin67 10396 isfin7-2 10397 |
Copyright terms: Public domain | W3C validator |