Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isfin7 | Structured version Visualization version GIF version |
Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin7 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝐴 ≈ 𝑦)) | |
2 | 1 | rexbidv 3225 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
3 | 2 | notbid 317 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
4 | df-fin7 9978 | . 2 ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | |
5 | 3, 4 | elab2g 3604 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 class class class wbr 5070 Oncon0 6251 ωcom 7687 ≈ cen 8688 FinVIIcfin7 9971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-fin7 9978 |
This theorem is referenced by: fin17 10081 fin67 10082 isfin7-2 10083 |
Copyright terms: Public domain | W3C validator |