|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > isfin7 | Structured version Visualization version GIF version | ||
| Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) | 
| Ref | Expression | 
|---|---|
| isfin7 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 5145 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝑦 ↔ 𝐴 ≈ 𝑦)) | |
| 2 | 1 | rexbidv 3178 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) | 
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝐴 → (¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦 ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) | 
| 4 | df-fin7 10332 | . 2 ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} | |
| 5 | 3, 4 | elab2g 3679 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinVII ↔ ¬ ∃𝑦 ∈ (On ∖ ω)𝐴 ≈ 𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ∖ cdif 3947 class class class wbr 5142 Oncon0 6383 ωcom 7888 ≈ cen 8983 FinVIIcfin7 10325 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-fin7 10332 | 
| This theorem is referenced by: fin17 10435 fin67 10436 isfin7-2 10437 | 
| Copyright terms: Public domain | W3C validator |