| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin1a | Structured version Visualization version GIF version | ||
| Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
| Ref | Expression |
|---|---|
| isfin1a | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4587 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | difeq1 4092 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∖ 𝑦) = (𝐴 ∖ 𝑦)) | |
| 3 | 2 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 4 | 3 | orbi2d 915 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin) ↔ (𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
| 5 | 1, 4 | raleqbidv 3323 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
| 6 | df-fin1a 10292 | . 2 ⊢ FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin)} | |
| 7 | 5, 6 | elab2g 3657 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∖ cdif 3921 𝒫 cpw 4573 Fincfn 8954 FinIacfin1a 10285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-ss 3941 df-pw 4575 df-fin1a 10292 |
| This theorem is referenced by: fin1ai 10300 fin11a 10390 enfin1ai 10391 |
| Copyright terms: Public domain | W3C validator |