![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin1a | Structured version Visualization version GIF version |
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin1a | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4619 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | difeq1 4129 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∖ 𝑦) = (𝐴 ∖ 𝑦)) | |
3 | 2 | eleq1d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
4 | 3 | orbi2d 915 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin) ↔ (𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
5 | 1, 4 | raleqbidv 3344 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
6 | df-fin1a 10323 | . 2 ⊢ FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin)} | |
7 | 5, 6 | elab2g 3683 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIa ↔ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ Fin ∨ (𝐴 ∖ 𝑦) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∖ cdif 3960 𝒫 cpw 4605 Fincfn 8984 FinIacfin1a 10316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-ss 3980 df-pw 4607 df-fin1a 10323 |
This theorem is referenced by: fin1ai 10331 fin11a 10421 enfin1ai 10422 |
Copyright terms: Public domain | W3C validator |