Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fld Structured version   Visualization version   GIF version

Definition df-fld 35887
Description: Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.)
Assertion
Ref Expression
df-fld Fld = (DivRingOps ∩ Com2)

Detailed syntax breakdown of Definition df-fld
StepHypRef Expression
1 cfld 35886 . 2 class Fld
2 cdrng 35843 . . 3 class DivRingOps
3 ccm2 35884 . . 3 class Com2
42, 3cin 3865 . 2 class (DivRingOps ∩ Com2)
51, 4wceq 1543 1 wff Fld = (DivRingOps ∩ Com2)
Colors of variables: wff setvar class
This definition is referenced by:  flddivrng  35894  fldcrng  35899  isfld2  35900
  Copyright terms: Public domain W3C validator