![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flddivrng | Structured version Visualization version GIF version |
Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
flddivrng | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fld 37979 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
2 | inss1 4245 | . . 3 ⊢ (DivRingOps ∩ Com2) ⊆ DivRingOps | |
3 | 1, 2 | eqsstri 4030 | . 2 ⊢ Fld ⊆ DivRingOps |
4 | 3 | sseli 3991 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3962 DivRingOpscdrng 37935 Com2ccm2 37976 Fldcfld 37978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 df-fld 37979 |
This theorem is referenced by: isfld2 37992 isfldidl 38055 |
Copyright terms: Public domain | W3C validator |