| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flddivrng | Structured version Visualization version GIF version | ||
| Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| flddivrng | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fld 38031 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 2 | inss1 4187 | . . 3 ⊢ (DivRingOps ∩ Com2) ⊆ DivRingOps | |
| 3 | 1, 2 | eqsstri 3981 | . 2 ⊢ Fld ⊆ DivRingOps |
| 4 | 3 | sseli 3930 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3901 DivRingOpscdrng 37987 Com2ccm2 38028 Fldcfld 38030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 df-fld 38031 |
| This theorem is referenced by: isfld2 38044 isfldidl 38107 |
| Copyright terms: Public domain | W3C validator |