![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flddivrng | Structured version Visualization version GIF version |
Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
flddivrng | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fld 34278 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
2 | inss1 4028 | . . 3 ⊢ (DivRingOps ∩ Com2) ⊆ DivRingOps | |
3 | 1, 2 | eqsstri 3831 | . 2 ⊢ Fld ⊆ DivRingOps |
4 | 3 | sseli 3794 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∩ cin 3768 DivRingOpscdrng 34234 Com2ccm2 34275 Fldcfld 34277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-in 3776 df-ss 3783 df-fld 34278 |
This theorem is referenced by: isfld2 34291 isfldidl 34354 |
Copyright terms: Public domain | W3C validator |