Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flddivrng Structured version   Visualization version   GIF version

Theorem flddivrng 35437
Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
flddivrng (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)

Proof of Theorem flddivrng
StepHypRef Expression
1 df-fld 35430 . . 3 Fld = (DivRingOps ∩ Com2)
2 inss1 4155 . . 3 (DivRingOps ∩ Com2) ⊆ DivRingOps
31, 2eqsstri 3949 . 2 Fld ⊆ DivRingOps
43sseli 3911 1 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cin 3880  DivRingOpscdrng 35386  Com2ccm2 35427  Fldcfld 35429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-in 3888  df-ss 3898  df-fld 35430
This theorem is referenced by:  isfld2  35443  isfldidl  35506
  Copyright terms: Public domain W3C validator