Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcrngo Structured version   Visualization version   GIF version

Theorem fldcrngo 36867
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
fldcrngo (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)

Proof of Theorem fldcrngo
StepHypRef Expression
1 eqid 2732 . . . . 5 (1st𝐾) = (1st𝐾)
2 eqid 2732 . . . . 5 (2nd𝐾) = (2nd𝐾)
3 eqid 2732 . . . . 5 ran (1st𝐾) = ran (1st𝐾)
4 eqid 2732 . . . . 5 (GId‘(1st𝐾)) = (GId‘(1st𝐾))
51, 2, 3, 4drngoi 36814 . . . 4 (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd𝐾) ↾ ((ran (1st𝐾) ∖ {(GId‘(1st𝐾))}) × (ran (1st𝐾) ∖ {(GId‘(1st𝐾))}))) ∈ GrpOp))
65simpld 495 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps)
76anim1i 615 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
8 df-fld 36855 . . 3 Fld = (DivRingOps ∩ Com2)
98elin2 4197 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
10 iscrngo 36859 . 2 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
117, 9, 103imtr4i 291 1 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  cdif 3945  {csn 4628   × cxp 5674  ran crn 5677  cres 5678  cfv 6543  1st c1st 7972  2nd c2nd 7973  GrpOpcgr 29737  GIdcgi 29738  RingOpscrngo 36757  DivRingOpscdrng 36811  Com2ccm2 36852  Fldcfld 36854  CRingOpsccring 36856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7974  df-2nd 7975  df-drngo 36812  df-fld 36855  df-crngo 36857
This theorem is referenced by:  isfld2  36868  isfldidl  36931
  Copyright terms: Public domain W3C validator