![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrngo | Structured version Visualization version GIF version |
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
fldcrngo | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
2 | eqid 2726 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
3 | eqid 2726 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
4 | eqid 2726 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
5 | 1, 2, 3, 4 | drngoi 37332 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
7 | 6 | anim1i 614 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
8 | df-fld 37373 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 8 | elin2 4192 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
10 | iscrngo 37377 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
11 | 7, 9, 10 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∖ cdif 3940 {csn 4623 × cxp 5667 ran crn 5670 ↾ cres 5671 ‘cfv 6537 1st c1st 7972 2nd c2nd 7973 GrpOpcgr 30251 GIdcgi 30252 RingOpscrngo 37275 DivRingOpscdrng 37329 Com2ccm2 37370 Fldcfld 37372 CRingOpsccring 37374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6489 df-fun 6539 df-fv 6545 df-1st 7974 df-2nd 7975 df-drngo 37330 df-fld 37373 df-crngo 37375 |
This theorem is referenced by: isfld2 37386 isfldidl 37449 |
Copyright terms: Public domain | W3C validator |