Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcrngo Structured version   Visualization version   GIF version

Theorem fldcrngo 37385
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
fldcrngo (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)

Proof of Theorem fldcrngo
StepHypRef Expression
1 eqid 2726 . . . . 5 (1st𝐾) = (1st𝐾)
2 eqid 2726 . . . . 5 (2nd𝐾) = (2nd𝐾)
3 eqid 2726 . . . . 5 ran (1st𝐾) = ran (1st𝐾)
4 eqid 2726 . . . . 5 (GId‘(1st𝐾)) = (GId‘(1st𝐾))
51, 2, 3, 4drngoi 37332 . . . 4 (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd𝐾) ↾ ((ran (1st𝐾) ∖ {(GId‘(1st𝐾))}) × (ran (1st𝐾) ∖ {(GId‘(1st𝐾))}))) ∈ GrpOp))
65simpld 494 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps)
76anim1i 614 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
8 df-fld 37373 . . 3 Fld = (DivRingOps ∩ Com2)
98elin2 4192 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
10 iscrngo 37377 . 2 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
117, 9, 103imtr4i 292 1 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  cdif 3940  {csn 4623   × cxp 5667  ran crn 5670  cres 5671  cfv 6537  1st c1st 7972  2nd c2nd 7973  GrpOpcgr 30251  GIdcgi 30252  RingOpscrngo 37275  DivRingOpscdrng 37329  Com2ccm2 37370  Fldcfld 37372  CRingOpsccring 37374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6489  df-fun 6539  df-fv 6545  df-1st 7974  df-2nd 7975  df-drngo 37330  df-fld 37373  df-crngo 37375
This theorem is referenced by:  isfld2  37386  isfldidl  37449
  Copyright terms: Public domain W3C validator