| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrngo | Structured version Visualization version GIF version | ||
| Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| Ref | Expression |
|---|---|
| fldcrngo | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
| 3 | eqid 2736 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
| 5 | 1, 2, 3, 4 | drngoi 37980 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
| 7 | 6 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
| 8 | df-fld 38021 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 9 | 8 | elin2 4183 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
| 10 | iscrngo 38025 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
| 11 | 7, 9, 10 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 × cxp 5657 ran crn 5660 ↾ cres 5661 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 GrpOpcgr 30475 GIdcgi 30476 RingOpscrngo 37923 DivRingOpscdrng 37977 Com2ccm2 38018 Fldcfld 38020 CRingOpsccring 38022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-1st 7993 df-2nd 7994 df-drngo 37978 df-fld 38021 df-crngo 38023 |
| This theorem is referenced by: isfld2 38034 isfldidl 38097 |
| Copyright terms: Public domain | W3C validator |