Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcrngo Structured version   Visualization version   GIF version

Theorem fldcrngo 38054
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
fldcrngo (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)

Proof of Theorem fldcrngo
StepHypRef Expression
1 eqid 2731 . . . . 5 (1st𝐾) = (1st𝐾)
2 eqid 2731 . . . . 5 (2nd𝐾) = (2nd𝐾)
3 eqid 2731 . . . . 5 ran (1st𝐾) = ran (1st𝐾)
4 eqid 2731 . . . . 5 (GId‘(1st𝐾)) = (GId‘(1st𝐾))
51, 2, 3, 4drngoi 38001 . . . 4 (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd𝐾) ↾ ((ran (1st𝐾) ∖ {(GId‘(1st𝐾))}) × (ran (1st𝐾) ∖ {(GId‘(1st𝐾))}))) ∈ GrpOp))
65simpld 494 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps)
76anim1i 615 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
8 df-fld 38042 . . 3 Fld = (DivRingOps ∩ Com2)
98elin2 4150 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
10 iscrngo 38046 . 2 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
117, 9, 103imtr4i 292 1 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  cdif 3894  {csn 4573   × cxp 5612  ran crn 5615  cres 5616  cfv 6481  1st c1st 7919  2nd c2nd 7920  GrpOpcgr 30469  GIdcgi 30470  RingOpscrngo 37944  DivRingOpscdrng 37998  Com2ccm2 38039  Fldcfld 38041  CRingOpsccring 38043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922  df-drngo 37999  df-fld 38042  df-crngo 38044
This theorem is referenced by:  isfld2  38055  isfldidl  38118
  Copyright terms: Public domain W3C validator