Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldcrngo Structured version   Visualization version   GIF version

Theorem fldcrngo 37988
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
fldcrngo (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)

Proof of Theorem fldcrngo
StepHypRef Expression
1 eqid 2729 . . . . 5 (1st𝐾) = (1st𝐾)
2 eqid 2729 . . . . 5 (2nd𝐾) = (2nd𝐾)
3 eqid 2729 . . . . 5 ran (1st𝐾) = ran (1st𝐾)
4 eqid 2729 . . . . 5 (GId‘(1st𝐾)) = (GId‘(1st𝐾))
51, 2, 3, 4drngoi 37935 . . . 4 (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd𝐾) ↾ ((ran (1st𝐾) ∖ {(GId‘(1st𝐾))}) × (ran (1st𝐾) ∖ {(GId‘(1st𝐾))}))) ∈ GrpOp))
65simpld 494 . . 3 (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps)
76anim1i 615 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
8 df-fld 37976 . . 3 Fld = (DivRingOps ∩ Com2)
98elin2 4154 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
10 iscrngo 37980 . 2 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
117, 9, 103imtr4i 292 1 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cdif 3900  {csn 4577   × cxp 5617  ran crn 5620  cres 5621  cfv 6482  1st c1st 7922  2nd c2nd 7923  GrpOpcgr 30433  GIdcgi 30434  RingOpscrngo 37878  DivRingOpscdrng 37932  Com2ccm2 37973  Fldcfld 37975  CRingOpsccring 37977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-1st 7924  df-2nd 7925  df-drngo 37933  df-fld 37976  df-crngo 37978
This theorem is referenced by:  isfld2  37989  isfldidl  38052
  Copyright terms: Public domain W3C validator