| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrngo | Structured version Visualization version GIF version | ||
| Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| Ref | Expression |
|---|---|
| fldcrngo | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
| 3 | eqid 2731 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
| 5 | 1, 2, 3, 4 | drngoi 38001 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
| 7 | 6 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
| 8 | df-fld 38042 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 9 | 8 | elin2 4150 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
| 10 | iscrngo 38046 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
| 11 | 7, 9, 10 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 {csn 4573 × cxp 5612 ran crn 5615 ↾ cres 5616 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 GrpOpcgr 30469 GIdcgi 30470 RingOpscrngo 37944 DivRingOpscdrng 37998 Com2ccm2 38039 Fldcfld 38041 CRingOpsccring 38043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 df-drngo 37999 df-fld 38042 df-crngo 38044 |
| This theorem is referenced by: isfld2 38055 isfldidl 38118 |
| Copyright terms: Public domain | W3C validator |