| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrngo | Structured version Visualization version GIF version | ||
| Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| Ref | Expression |
|---|---|
| fldcrngo | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
| 5 | 1, 2, 3, 4 | drngoi 37938 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
| 7 | 6 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
| 8 | df-fld 37979 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 9 | 8 | elin2 4162 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
| 10 | iscrngo 37983 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
| 11 | 7, 9, 10 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 {csn 4585 × cxp 5629 ran crn 5632 ↾ cres 5633 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 GrpOpcgr 30468 GIdcgi 30469 RingOpscrngo 37881 DivRingOpscdrng 37935 Com2ccm2 37976 Fldcfld 37978 CRingOpsccring 37980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-2nd 7948 df-drngo 37936 df-fld 37979 df-crngo 37981 |
| This theorem is referenced by: isfld2 37992 isfldidl 38055 |
| Copyright terms: Public domain | W3C validator |