HomeHome Metamath Proof Explorer
Theorem List (p. 369 of 491)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30946)
  Hilbert Space Explorer  Hilbert Space Explorer
(30947-32469)
  Users' Mathboxes  Users' Mathboxes
(32470-49035)
 

Theorem List for Metamath Proof Explorer - 36801-36900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-hbaeb 36801 Biconditional version of hbae 2433. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧𝑥 𝑥 = 𝑦)
 
Theorembj-hbnaeb 36802 Biconditional version of hbnae 2434 (to replace it?). (Contributed by BJ, 6-Oct-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
Theorembj-dvv 36803 A special instance of bj-hbaeb2 36800. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.)
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑦 𝑥 = 𝑦)
 
21.19.4.14  Around ~ equsal

As a rule of thumb, if a theorem of the form (𝜑𝜓) ⇒ (𝜒𝜃) is in the database, and the "more precise" theorems (𝜑𝜓) ⇒ (𝜒𝜃) and (𝜓𝜑) ⇒ (𝜃𝜒) also hold (see bj-bisym 36572), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2420 (and equsalh 2422 and equsexh 2423). Even if only one of these two theorems holds, it should be added to the database.

 
Theorembj-equsal1t 36804 Duplication of wl-equsal1t 37522, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 1997 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 37523 is also interesting. (Contributed by BJ, 6-Oct-2018.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
 
Theorembj-equsal1ti 36805 Inference associated with bj-equsal1t 36804. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
 
Theorembj-equsal1 36806 One direction of equsal 2419. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
 
Theorembj-equsal2 36807 One direction of equsal 2419. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓))
 
Theorembj-equsal 36808 Shorter proof of equsal 2419. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2419, but "min */exc equsal" is ok. (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
21.19.4.15  Some Principia Mathematica proofs

References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx".

 
Theoremstdpc5t 36809 Closed form of stdpc5 2205. (Possible to place it before 19.21t 2203 and use it to prove 19.21t 2203). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-stdpc5 36810 More direct proof of stdpc5 2205. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem2stdpc5 36811 A double stdpc5 2205 (one direction of PM*11.3). See also 2stdpc4 2067 and 19.21vv 44371. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-19.21t0 36812 Proof of 19.21t 2203 from stdpc5t 36809. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theoremexlimii 36813 Inference associated with exlimi 2214. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.)
𝑥𝜓    &   (𝜑𝜓)    &   𝑥𝜑       𝜓
 
Theoremax11-pm 36814 Proof of ax-11 2154 similar to PM's proof of alcom 2156 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 36818. Axiom ax-11 2154 is used in the proof only through nfa2 2173. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremax6er 36815 Commuted form of ax6e 2385. (Could be placed right after ax6e 2385). (Contributed by BJ, 15-Sep-2018.)
𝑥 𝑦 = 𝑥
 
Theoremexlimiieq1 36816 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremexlimiieq2 36817 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.)
𝑦𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremax11-pm2 36818* Proof of ax-11 2154 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2156 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2154 is used in the proof only through nfal 2321, nfsb 2525, sbal 2166, sb8 2519. See also ax11-pm 36814. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
21.19.4.16  Alternate definition of substitution
 
Theorembj-sbsb 36819 Biconditional showing two possible (dual) definitions of substitution df-sb 2062 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
(((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
Theorembj-dfsb2 36820 Alternate (dual) definition of substitution df-sb 2062 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
21.19.4.17  Lemmas for substitution
 
Theorembj-sbf3 36821 Substitution has no effect on a bound variable (existential quantifier case); see sbf2 2269. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-sbf4 36822 Substitution has no effect on a bound variable (nonfreeness case); see sbf2 2269. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
21.19.4.18  Existential uniqueness
 
Theorembj-eu3f 36823* Version of eu3v 2567 where the disjoint variable condition is replaced with a nonfreeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2567. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
21.19.4.19  First-order logic: miscellaneous

Miscellaneous theorems of first-order logic.

 
Theorembj-sblem1 36824* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜒)))
 
Theorembj-sblem2 36825* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜒𝜓)) → ((∃𝑥𝜑𝜒) → ∀𝑥(𝜑𝜓)))
 
Theorembj-sblem 36826* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜒)))
 
Theorembj-sbievw1 36827* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
 
Theorembj-sbievw2 36828* Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜓𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑))
 
Theorembj-sbievw 36829* Lemma for substitution. Closed form of equsalvw 2000 and sbievw 2090. (Contributed by BJ, 23-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑𝜓))
 
Theorembj-sbievv 36830 Version of sbie 2504 with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023.) (Proof modification is discouraged.)
𝑥𝜓    &   𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theorembj-moeub 36831 Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑))
 
Theorembj-sbidmOLD 36832 Obsolete proof of sbidm 2512 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theorembj-dvelimdv 36833* Deduction form of dvelim 2453 with disjoint variable conditions. Uncurried (imported) form of bj-dvelimdv1 36834. Typically, 𝑧 is a fresh variable used for the implicit substitution hypothesis that results in 𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as 𝜓(𝑥, 𝑧)). So the theorem says that if x is effectively free in 𝜓(𝑥, 𝑧), then if x and y are not the same variable, then 𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context 𝜑.

One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1911 can be replaced with nfal 2321 followed by nfn 1854.

Remark: nfald 2326 uses ax-11 2154; it might be possible to inline and use ax11w 2127 instead, but there is still a use via 19.12 2325 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

(𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
 
Theorembj-dvelimdv1 36834* Curried (exported) form of bj-dvelimdv 36833 (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓))
 
Theorembj-dvelimv 36835* A version of dvelim 2453 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑧 = 𝑦 → (𝜓𝜑))       (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
 
Theorembj-nfeel2 36836* Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
 
Theorembj-axc14nf 36837 Proof of a version of axc14 2465 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥𝑦))
 
Theorembj-axc14 36838 Alternate proof of axc14 2465 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
 
TheoremmobidvALT 36839* Alternate proof of mobidv 2546 directly from its analogues albidv 1917 and exbidv 1918, using deduction style. Note the proof structure, similar to mobi 2544. (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 1964, ax-7 2004, ax-12 2174 by adapting proof of mobid 2547. (Revised by BJ, 26-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremsbn1ALT 36840 Alternate proof of sbn1 2104, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)
 
21.19.5  Set theory
 
21.19.5.1  Eliminability of class terms

In this section, we give a sketch of the proof of the Eliminability Theorem for class terms in an extensional set theory where quantification occurs only over set variables.

Eliminability of class variables using the $a-statements ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813 is an easy result, proved for instance in Appendix X of Azriel Levy, Basic Set Theory, Dover Publications, 2002. Note that viewed from the set.mm axiomatization, it is a metatheorem not formalizable in set.mm. It states: every formula in the language of FOL + + class terms, but without class variables, is provably equivalent (over {FOL, ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813 }) to a formula in the language of FOL + (that is, without class terms).

The proof goes by induction on the complexity of the formula (see op. cit. for details). The base case is that of atomic formulas. The atomic formulas containing class terms are of one of the six following forms: for equality, 𝑥 = {𝑦𝜑}, {𝑥𝜑} = 𝑦, {𝑥𝜑} = {𝑦𝜓}, and for membership, 𝑦 ∈ {𝑥𝜑}, {𝑥𝜑} ∈ 𝑦, {𝑥𝜑} ∈ {𝑦𝜓}. These cases are dealt with by eliminable-veqab 36848, eliminable-abeqv 36849, eliminable-abeqab 36850, eliminable-velab 36847, eliminable-abelv 36851, eliminable-abelab 36852 respectively, which are all proved from {FOL, ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813 }.

(Details on the proof of the above six theorems. To understand how they were systematically proved, look at the theorems "eliminablei" below, which are special instances of df-clab 2712, dfcleq 2727 (proved from {FOL, ax-ext 2705, df-cleq 2726 }), and dfclel 2814 (proved from {FOL, df-clel 2813 }). Indeed, denote by (i) the formula proved by "eliminablei". One sees that the RHS of (1) has no class terms, the RHS's of (2x) have only class terms of the form dealt with by (1), and the RHS's of (3x) have only class terms of the forms dealt with by (1) and (2a). Note that in order to prove eliminable2a 36842, eliminable2b 36843 and eliminable3a 36845, we need to substitute a class variable for a setvar variable. This is possible because setvars are class terms: this is the content of the syntactic theorem cv 1535, which is used in these proofs (this does not appear in the html pages but it is in the set.mm file and you can check it using the Metamath program).)

The induction step relies on the fact that any formula is a FOL-combination of atomic formulas, so if one found equivalents for all atomic formulas constituting the formula, then the same FOL-combination of these equivalents will be equivalent to the original formula.

Note that one has a slightly more precise result: if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑}, then df-clab 2712 is sufficient (over FOL) to eliminate class terms, and if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑} and equalities, then df-clab 2712, ax-ext 2705 and df-cleq 2726 are sufficient (over FOL) to eliminate class terms.

To prove that { df-clab 2712, df-cleq 2726, df-clel 2813 } provides a definitional extension of {FOL, ax-ext 2705 }, one needs to prove both the above Eliminability Theorem, which compares the expressive powers of the languages with and without class terms, and the Conservativity Theorem, which compares the deductive powers when one adds { df-clab 2712, df-cleq 2726, df-clel 2813 }. It states that a formula without class terms is provable in one axiom system if and only if it is provable in the other, and that this remains true when one adds further definitions to {FOL, ax-ext 2705 }. It is also proved in op. cit. The proof is more difficult, since one has to construct for each proof of a statement without class terms, an associated proof not using { df-clab 2712, df-cleq 2726, df-clel 2813 }. It involves a careful case study on the structure of the proof tree.

 
Theoremeliminable1 36841 A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable2a 36842* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝜑}))
 
Theoremeliminable2b 36843* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦))
 
Theoremeliminable2c 36844* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable3a 36845* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦))
 
Theoremeliminable3b 36846* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable-velab 36847 A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable-veqab 36848* A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥 ↔ [𝑧 / 𝑦]𝜑))
 
Theoremeliminable-abeqv 36849* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑𝑧𝑦))
 
Theoremeliminable-abeqab 36850* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓))
 
Theoremeliminable-abelv 36851* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧𝑦))
 
Theoremeliminable-abelab 36852* A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(∀𝑡(𝑡𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ [𝑧 / 𝑦]𝜓))
 
21.19.5.2  Classes without the axiom of extensionality

A few results about classes can be proved without using ax-ext 2705. One could move all theorems from cab 2711 to df-clel 2813 (except for dfcleq 2727 and cvjust 2728) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2726.

Note that without ax-ext 2705, the $a-statements df-clab 2712, df-cleq 2726, and df-clel 2813 are no longer eliminable (see previous section) (but PROBABLY df-clab 2712 is still conservative , while df-cleq 2726 and df-clel 2813 are not). This is not a reason not to study what is provable with them but without ax-ext 2705, in order to gauge their strengths more precisely.

Before that subsection, a subsection "The membership predicate" could group the statements with that are currently in the FOL part (including wcel 2105, wel 2106, ax-8 2107, ax-9 2115).

Remark: the weakening of eleq1 2826 / eleq2 2827 to eleq1w 2821 / eleq2w 2822 can also be done with eleq1i 2829, eqeltri 2834, eqeltrri 2835, eleq1a 2833, eleq1d 2823, eqeltrd 2838, eqeltrrd 2839, eqneltrd 2858, eqneltrrd 2859, nelneq 2862.

Remark: possibility to remove dependency on ax-10 2138, ax-11 2154, ax-13 2374 from nfcri 2894 and theorems using it if one adds a disjoint variable condition (that theorem is typically used with dummy variables, so the disjoint variable condition addition is not very restrictive), and then shorten nfnfc 2915.

 
Theorembj-denoteslem 36853* Duplicate of issettru 2816 and bj-issettruALTV 36855.

Lemma for bj-denotesALTV 36854. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-denotesALTV 36854* Moved to main as iseqsetv-clel 2817 and kept for the comments.

This would be the justification theorem for the definition of the unary predicate "E!" by ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be interpreted as "𝐴 exists" (as a set) or "𝐴 denotes" (in the sense of free logic).

A shorter proof using bitri 275 (to add an intermediate proposition 𝑧𝑧 = 𝐴 with a fresh 𝑧), cbvexvw 2033, and eqeq1 2738, requires the core axioms and { ax-9 2115, ax-ext 2705, df-cleq 2726 } whereas this proof requires the core axioms and { ax-8 2107, df-clab 2712, df-clel 2813 }.

Theorem bj-issetwt 36857 proves that "existing" is equivalent to being a member of a class abstraction. It also requires, with the present proof, { ax-8 2107, df-clab 2712, df-clel 2813 } (whereas with the shorter proof from cbvexvw 2033 and eqeq1 2738 it would require { ax-8 2107, ax-9 2115, ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813 }). That every class is equal to a class abstraction is proved by abid1 2875, which requires { ax-8 2107, ax-9 2115, ax-ext 2705, df-clab 2712, df-cleq 2726, df-clel 2813 }.

Note that there is no disjoint variable condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2374. Actually, the proof depends only on the logical axioms ax-1 6 through ax-7 2004 and sp 2180.

The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of nonexistent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: these are derived from ax-ext 2705 and df-cleq 2726 (e.g., eqid 2734 and eqeq1 2738). In particular, one cannot even prove 𝑥𝑥 = 𝐴𝐴 = 𝐴 without ax-ext 2705 and df-cleq 2726.

(Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-issettruALTV 36855* Moved to main as issettru 2816 and kept for the comments.

Weak version of isset 3491 without ax-ext 2705. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-elabtru 36856 This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2705. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
(𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤})
 
Theorembj-issetwt 36857* Closed form of bj-issetw 36858. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴))
 
Theorembj-issetw 36858* The closest one can get to isset 3491 without using ax-ext 2705. See also vexw 2717. Note that the only disjoint variable condition is between 𝑦 and 𝐴. From there, one can prove isset 3491 using eleq2i 2830 (which requires ax-ext 2705 and df-cleq 2726). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
𝜑       (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-issetiv 36859* Version of bj-isseti 36860 with a disjoint variable condition on 𝑥, 𝑉. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general than isseti 3495 as long as elex 3498 is not available (and the non-dependence of bj-issetiv 36859 on special properties of the universal class V is obvious). Prefer its use over bj-isseti 36860 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-isseti 36860* Version of isseti 3495 with a class variable 𝑉 in the hypothesis instead of V for extra generality. This is indeed more general than isseti 3495 as long as elex 3498 is not available (and the non-dependence of bj-isseti 36860 on special properties of the universal class V is obvious). Use bj-issetiv 36859 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-ralvw 36861 A weak version of ralv 3505 not using ax-ext 2705 (nor df-cleq 2726, df-clel 2813, df-v 3479), and only core FOL axioms. See also bj-rexvw 36862. The analogues for reuv 3507 and rmov 3508 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∀𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-rexvw 36862 A weak version of rexv 3506 not using ax-ext 2705 (nor df-cleq 2726, df-clel 2813, df-v 3479), and only core FOL axioms. See also bj-ralvw 36861. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-rababw 36863 A weak version of rabab 3509 not using df-clel 2813 nor df-v 3479 (but requiring ax-ext 2705) nor ax-12 2174. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
 
Theorembj-rexcom4bv 36864* Version of rexcom4b 3510 and bj-rexcom4b 36865 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2062 and df-clab 2712 (so that it depends on df-clel 2813 and df-rex 3068 only on top of first-order logic). Prefer its use over bj-rexcom4b 36865 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-rexcom4b 36865* Remove from rexcom4b 3510 dependency on ax-ext 2705 and ax-13 2374 (and on df-or 848, df-cleq 2726, df-nfc 2889, df-v 3479). The hypothesis uses 𝑉 instead of V (see bj-isseti 36860 for the motivation). Use bj-rexcom4bv 36864 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-ceqsalt0 36866 The FOL content of ceqsalt 3512. Lemma for bj-ceqsalt 36868 and bj-ceqsaltv 36869. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt1 36867 The FOL content of ceqsalt 3512. Lemma for bj-ceqsalt 36868 and bj-ceqsaltv 36869. TODO: consider removing if it does not add anything to bj-ceqsalt0 36866. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
(𝜃 → ∃𝑥𝜒)       ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ 𝜃) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt 36868* Remove from ceqsalt 3512 dependency on ax-ext 2705 (and on df-cleq 2726 and df-v 3479). Note: this is not doable with ceqsralt 3513 (or ceqsralv 3519), which uses eleq1 2826, but the same dependence removal is possible for ceqsalg 3514, ceqsal 3516, ceqsalv 3518, cgsexg 3523, cgsex2g 3524, cgsex4g 3525, ceqsex 3527, ceqsexv 3529, ceqsex2 3534, ceqsex2v 3535, ceqsex3v 3536, ceqsex4v 3537, ceqsex6v 3538, ceqsex8v 3539, gencbvex 3540 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3541, gencbval 3542, vtoclgft 3551 (it uses , whose justification nfcjust 2888 does not use ax-ext 2705) and several other vtocl* theorems (see for instance bj-vtoclg1f 36900). See also bj-ceqsaltv 36869. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsaltv 36869* Version of bj-ceqsalt 36868 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2062 and df-clab 2712. Prefer its use over bj-ceqsalt 36868 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg0 36870 The FOL content of ceqsalg 3514. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg 36871* Remove from ceqsalg 3514 dependency on ax-ext 2705 (and on df-cleq 2726 and df-v 3479). See also bj-ceqsalgv 36873. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgALT 36872* Alternate proof of bj-ceqsalg 36871. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgv 36873* Version of bj-ceqsalg 36871 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2062 and df-clab 2712. Prefer its use over bj-ceqsalg 36871 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgvALT 36874* Alternate proof of bj-ceqsalgv 36873. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsal 36875* Remove from ceqsal 3516 dependency on ax-ext 2705 (and on df-cleq 2726, df-v 3479, df-clab 2712, df-sb 2062). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-ceqsalv 36876* Remove from ceqsalv 3518 dependency on ax-ext 2705 (and on df-cleq 2726, df-v 3479, df-clab 2712, df-sb 2062). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-spcimdv 36877* Remove from spcimdv 3592 dependency on ax-9 2115, ax-10 2138, ax-11 2154, ax-13 2374, ax-ext 2705, df-cleq 2726 (and df-nfc 2889, df-v 3479, df-or 848, df-tru 1539, df-nf 1780). For an even more economical version, see bj-spcimdvv 36878. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-spcimdvv 36878* Remove from spcimdv 3592 dependency on ax-7 2004, ax-8 2107, ax-10 2138, ax-11 2154, ax-12 2174 ax-13 2374, ax-ext 2705, df-cleq 2726, df-clab 2712 (and df-nfc 2889, df-v 3479, df-or 848, df-tru 1539, df-nf 1780) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 36877. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
21.19.5.3  Characterization among sets versus among classes
 
Theoremelelb 36879 Equivalence between two common ways to characterize elements of a class 𝐵: the LHS says that sets are elements of 𝐵 if and only if they satisfy 𝜑 while the RHS says that classes are elements of 𝐵 if and only if they are sets and satisfy 𝜑. Therefore, the LHS is a characterization among sets while the RHS is a characterization among classes. Note that the LHS is often formulated using a class variable instead of the universe V while this is not possible for the RHS (apart from using 𝐵 itself, which would not be very useful). (Contributed by BJ, 26-Feb-2023.)
((𝐴 ∈ V → (𝐴𝐵𝜑)) ↔ (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜑)))
 
Theorembj-pwvrelb 36880 Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.)
(𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴))
 
21.19.5.4  The nonfreeness quantifier for classes

In this section, we prove the symmetry of the nonfreeness quantifier for classes.

 
Theorembj-nfcsym 36881 The nonfreeness quantifier for classes defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 5380 with additional axioms; see also nfcv 2902). This could be proved from aecom 2429 and nfcvb 5381 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2740 instead of equcomd 2015; removing dependency on ax-ext 2705 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2922, eleq2d 2824 (using elequ2 2120), nfcvf 2929, dvelimc 2928, dvelimdc 2927, nfcvf2 2930. (Proof modification is discouraged.)
(𝑥𝑦𝑦𝑥)
 
21.19.5.5  Lemmas for class substitution

Some useful theorems for dealing with substitutions: sbbi 2306, sbcbig 3845, sbcel1g 4421, sbcel2 4423, sbcel12 4416, sbceqg 4417, csbvarg 4439.

 
Theorembj-sbeqALT 36882* Substitution in an equality (use the more general version bj-sbeq 36883 instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbeq 36883 Distribute proper substitution through an equality relation. (See sbceqg 4417). (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbceqgALT 36884 Distribute proper substitution through an equality relation. Alternate proof of sbceqg 4417. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 4417, but the Metamath program "MM-PA> MINIMIZE_WITH * / EXCEPT sbceqg" command is ok. (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theorembj-csbsnlem 36885* Lemma for bj-csbsn 36886 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-csbsn 36886 Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-sbel1 36887* Version of sbcel1g 4421 when substituting a set. (Note: one could have a corresponding version of sbcel12 4416 when substituting a set, but the point here is that the antecedent of sbcel1g 4421 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
 
Theorembj-abv 36888 The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → {𝑥𝜑} = V)
 
Theorembj-abvALT 36889 Alternate version of bj-abv 36888; shorter but uses ax-8 2107. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝜑 → {𝑥𝜑} = V)
 
Theorembj-ab0 36890 The class of sets verifying a falsity is the empty set (closed form of abf 4411). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
 
Theorembj-abf 36891 Shorter proof of abf 4411 (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
¬ 𝜑       {𝑥𝜑} = ∅
 
Theorembj-csbprc 36892 More direct proof of csbprc 4414 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
 
21.19.5.6  Removing some axiom requirements and disjoint variable conditions
 
Theorembj-exlimvmpi 36893* A Fol lemma (exlimiv 1927 followed by mpi 20). (Contributed by BJ, 2-Jul-2022.) (Proof modification is discouraged.)
(𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpi 36894 Lemma for bj-vtoclg1f1 36899 (an instance of this lemma is a version of bj-vtoclg1f1 36899 where 𝑥 and 𝑦 are identified). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbi 36895 Lemma for theorems of the vtoclg 3553 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbir 36896 Lemma for theorems of the vtoclg 3553 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜒 → (𝜑𝜓))    &   𝜓       (∃𝑥𝜒𝜑)
 
Theorembj-vtoclf 36897* Remove dependency on ax-ext 2705, df-clab 2712 and df-cleq 2726 (and df-sb 2062 and df-v 3479) from vtoclf 3563. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtocl 36898* Remove dependency on ax-ext 2705, df-clab 2712 and df-cleq 2726 (and df-sb 2062 and df-v 3479) from vtocl 3557. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
 
Theorembj-vtoclg1f1 36899* The FOL content of vtoclg1f 3569 (hence not using ax-ext 2705, df-cleq 2726, df-nfc 2889, df-v 3479). Note the weakened "major" hypothesis and the disjoint variable condition between 𝑥 and 𝐴 (needed since the nonfreeness quantifier for classes is not available without ax-ext 2705; as a byproduct, this dispenses with ax-11 2154 and ax-13 2374). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (∃𝑦 𝑦 = 𝐴𝜓)
 
Theorembj-vtoclg1f 36900* Reprove vtoclg1f 3569 from bj-vtoclg1f1 36899. This removes dependency on ax-ext 2705, df-cleq 2726 and df-v 3479. Use bj-vtoclg1fv 36901 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       (𝐴𝑉𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49035
  Copyright terms: Public domain < Previous  Next >