| Metamath
Proof Explorer Theorem List (p. 369 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-cbvexdv 36801* | Version of cbvexd 2413 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
| Theorem | bj-cbval2vv 36802* | Version of cbval2vv 2418 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
| Theorem | bj-cbvex2vv 36803* | Version of cbvex2vv 2419 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
| Theorem | bj-cbvaldvav 36804* | Version of cbvaldva 2414 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
| Theorem | bj-cbvexdvav 36805* | Version of cbvexdva 2415 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
| Theorem | bj-cbvex4vv 36806* | Version of cbvex4v 2420 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
| Theorem | bj-equsalhv 36807* |
Version of equsalh 2425 with a disjoint variable condition, which
does not
require ax-13 2377. Remark: this is the same as equsalhw 2291. TODO:
delete after moving the following paragraph somewhere.
Remarks: equsexvw 2004 has been moved to Main; Theorem ax13lem2 2381 has a DV version which is a simple consequence of ax5e 1912; Theorems nfeqf2 2382, dveeq2 2383, nfeqf1 2384, dveeq1 2385, nfeqf 2386, axc9 2387, ax13 2380, have dv versions which are simple consequences of ax-5 1910. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
| Theorem | bj-axc11nv 36808* | Version of axc11n 2431 with a disjoint variable condition; instance of aevlem 2055. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Theorem | bj-aecomsv 36809* | Version of aecoms 2433 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2434 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5441). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
| Theorem | bj-axc11v 36810* | Version of axc11 2435 with a disjoint variable condition, which does not require ax-13 2377 nor ax-10 2141. Remark: the following theorems (hbae 2436, nfae 2438, hbnae 2437, nfnae 2439, hbnaes 2440) would need to be totally unbundled to be proved without ax-13 2377, hence would be simple consequences of ax-5 1910 or nfv 1914. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
| Theorem | bj-drnf2v 36811* | Version of drnf2 2449 with a disjoint variable condition, which does not require ax-10 2141, ax-11 2157, ax-12 2177, ax-13 2377. Instance of nfbidv 1922. Note that the version of axc15 2427 with a disjoint variable condition is actually ax12v2 2179 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
| Theorem | bj-equs45fv 36812* | Version of equs45f 2464 with a disjoint variable condition, which does not require ax-13 2377. Note that the version of equs5 2465 with a disjoint variable condition is actually sbalex 2242 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | bj-hbs1 36813* | Version of hbsb2 2487 with a disjoint variable condition, which does not require ax-13 2377, and removal of ax-13 2377 from hbs1 2274. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfs1v 36814* | Version of nfsb2 2488 with a disjoint variable condition, which does not require ax-13 2377, and removal of ax-13 2377 from nfs1v 2156. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
| Theorem | bj-hbsb2av 36815* | Version of hbsb2a 2489 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-hbsb3v 36816* | Version of hbsb3 2492 with a disjoint variable condition, which does not require ax-13 2377. (Remark: the unbundled version of nfs1 2493 is given by bj-nfs1v 36814.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-nfsab1 36817* | Remove dependency on ax-13 2377 from nfsab1 2722. UPDATE / TODO: nfsab1 2722 does not use ax-13 2377 either anymore; bj-nfsab1 36817 is shorter than nfsab1 2722 but uses ax-12 2177. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | ||
| Theorem | bj-dtrucor2v 36818* | Version of dtrucor2 5372 with a disjoint variable condition, which does not require ax-13 2377 (nor ax-4 1809, ax-5 1910, ax-7 2007, ax-12 2177). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
The closed formula ∀𝑥∀𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence. | ||
| Theorem | bj-hbaeb2 36819 | Biconditional version of a form of hbae 2436 with commuted quantifiers, not requiring ax-11 2157. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | ||
| Theorem | bj-hbaeb 36820 | Biconditional version of hbae 2436. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
| Theorem | bj-hbnaeb 36821 | Biconditional version of hbnae 2437 (to replace it?). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | bj-dvv 36822 | A special instance of bj-hbaeb2 36819. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑦 𝑥 = 𝑦) | ||
As a rule of thumb, if a theorem of the form ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) is in the database, and the "more precise" theorems ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜒 → 𝜃) and ⊢ (𝜓 → 𝜑) ⇒ ⊢ (𝜃 → 𝜒) also hold (see bj-bisym 36591), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2423 (and equsalh 2425 and equsexh 2426). Even if only one of these two theorems holds, it should be added to the database. | ||
| Theorem | bj-equsal1t 36823 | Duplication of wl-equsal1t 37543, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2000 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 37544 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
| Theorem | bj-equsal1ti 36824 | Inference associated with bj-equsal1t 36823. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) | ||
| Theorem | bj-equsal1 36825 | One direction of equsal 2422. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) | ||
| Theorem | bj-equsal2 36826 | One direction of equsal 2422. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) | ||
| Theorem | bj-equsal 36827 | Shorter proof of equsal 2422. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2422, but "min */exc equsal" is ok. (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx". | ||
| Theorem | stdpc5t 36828 | Closed form of stdpc5 2208. (Possible to place it before 19.21t 2206 and use it to prove 19.21t 2206). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | bj-stdpc5 36829 | More direct proof of stdpc5 2208. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | ||
| Theorem | 2stdpc5 36830 | A double stdpc5 2208 (one direction of PM*11.3). See also 2stdpc4 2070 and 19.21vv 44395. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
| Theorem | bj-19.21t0 36831 | Proof of 19.21t 2206 from stdpc5t 36828. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
| Theorem | exlimii 36832 | Inference associated with exlimi 2217. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜑 → 𝜓) & ⊢ ∃𝑥𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | ax11-pm 36833 | Proof of ax-11 2157 similar to PM's proof of alcom 2159 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 36837. Axiom ax-11 2157 is used in the proof only through nfa2 2176. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | ax6er 36834 | Commuted form of ax6e 2388. (Could be placed right after ax6e 2388). (Contributed by BJ, 15-Sep-2018.) |
| ⊢ ∃𝑥 𝑦 = 𝑥 | ||
| Theorem | exlimiieq1 36835 | Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | exlimiieq2 36836 | Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | ax11-pm2 36837* | Proof of ax-11 2157 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2159 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2157 is used in the proof only through nfal 2323, nfsb 2528, sbal 2169, sb8 2522. See also ax11-pm 36833. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Theorem | bj-sbsb 36838 | Biconditional showing two possible (dual) definitions of substitution df-sb 2065 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
| ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | ||
| Theorem | bj-dfsb2 36839 | Alternate (dual) definition of substitution df-sb 2065 not using dummy variables. (Contributed by BJ, 19-Mar-2021.) |
| ⊢ ([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∨ (𝑥 = 𝑦 ∧ 𝜑))) | ||
| Theorem | bj-sbf3 36840 | Substitution has no effect on a bound variable (existential quantifier case); see sbf2 2272. (Contributed by BJ, 2-May-2019.) |
| ⊢ ([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | bj-sbf4 36841 | Substitution has no effect on a bound variable (nonfreeness case); see sbf2 2272. (Contributed by BJ, 2-May-2019.) |
| ⊢ ([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑) | ||
| Theorem | bj-eu3f 36842* | Version of eu3v 2570 where the disjoint variable condition is replaced with a nonfreeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2570. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.) |
| ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Miscellaneous theorems of first-order logic. | ||
| Theorem | bj-sblem1 36843* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜒))) | ||
| Theorem | bj-sblem2 36844* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) → ((∃𝑥𝜑 → 𝜒) → ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | bj-sblem 36845* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 ↔ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜒))) | ||
| Theorem | bj-sbievw1 36846* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → 𝜓)) | ||
| Theorem | bj-sbievw2 36847* | Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
| Theorem | bj-sbievw 36848* | Lemma for substitution. Closed form of equsalvw 2003 and sbievw 2093. (Contributed by BJ, 23-Jul-2023.) |
| ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) | ||
| Theorem | bj-sbievv 36849 | Version of sbie 2507 with a second nonfreeness hypothesis and shorter proof. (Contributed by BJ, 18-Jul-2023.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
| Theorem | bj-moeub 36850 | Uniqueness is equivalent to existence being equivalent to unique existence. (Contributed by BJ, 14-Oct-2022.) |
| ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 ↔ ∃!𝑥𝜑)) | ||
| Theorem | bj-sbidmOLD 36851 | Obsolete proof of sbidm 2515 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | bj-dvelimdv 36852* |
Deduction form of dvelim 2456 with disjoint variable conditions. Uncurried
(imported) form of bj-dvelimdv1 36853. Typically, 𝑧 is a fresh
variable used for the implicit substitution hypothesis that results in
𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as
𝜓(𝑥, 𝑧)). So the theorem says that if x is
effectively free
in 𝜓(𝑥, 𝑧), then if x and y are not the same
variable, then
𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context
𝜑.
One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1914 can be replaced with nfal 2323 followed by nfn 1857. Remark: nfald 2328 uses ax-11 2157; it might be possible to inline and use ax11w 2130 instead, but there is still a use via 19.12 2327 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | ||
| Theorem | bj-dvelimdv1 36853* | Curried (exported) form of bj-dvelimdv 36852 (of course, one is directly provable from the other, but we keep this proof for illustration purposes). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)) | ||
| Theorem | bj-dvelimv 36854* | A version of dvelim 2456 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜑)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | ||
| Theorem | bj-nfeel2 36855* | Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝑧) | ||
| Theorem | bj-axc14nf 36856 | Proof of a version of axc14 2468 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) | ||
| Theorem | bj-axc14 36857 | Alternate proof of axc14 2468 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) | ||
| Theorem | mobidvALT 36858* | Alternate proof of mobidv 2549 directly from its analogues albidv 1920 and exbidv 1921, using deduction style. Note the proof structure, similar to mobi 2547. (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. Remove dependency on ax-6 1967, ax-7 2007, ax-12 2177 by adapting proof of mobid 2550. (Revised by BJ, 26-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
| Theorem | sbn1ALT 36859 | Alternate proof of sbn1 2107, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑) | ||
In this section, we give a sketch of the proof of the Eliminability Theorem for class terms in an extensional set theory where quantification occurs only over set variables. Eliminability of class variables using the $a-statements ax-ext 2708, df-clab 2715, df-cleq 2729, df-clel 2816 is an easy result, proved for instance in Appendix X of Azriel Levy, Basic Set Theory, Dover Publications, 2002. Note that viewed from the set.mm axiomatization, it is a metatheorem not formalizable in set.mm. It states: every formula in the language of FOL + ∈ + class terms, but without class variables, is provably equivalent (over {FOL, ax-ext 2708, df-clab 2715, df-cleq 2729, df-clel 2816 }) to a formula in the language of FOL + ∈ (that is, without class terms). The proof goes by induction on the complexity of the formula (see op. cit. for details). The base case is that of atomic formulas. The atomic formulas containing class terms are of one of the six following forms: for equality, 𝑥 = {𝑦 ∣ 𝜑}, {𝑥 ∣ 𝜑} = 𝑦, {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓}, and for membership, 𝑦 ∈ {𝑥 ∣ 𝜑}, {𝑥 ∣ 𝜑} ∈ 𝑦, {𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓}. These cases are dealt with by eliminable-veqab 36867, eliminable-abeqv 36868, eliminable-abeqab 36869, eliminable-velab 36866, eliminable-abelv 36870, eliminable-abelab 36871 respectively, which are all proved from {FOL, ax-ext 2708, df-clab 2715, df-cleq 2729, df-clel 2816 }. (Details on the proof of the above six theorems. To understand how they were systematically proved, look at the theorems "eliminablei" below, which are special instances of df-clab 2715, dfcleq 2730 (proved from {FOL, ax-ext 2708, df-cleq 2729 }), and dfclel 2817 (proved from {FOL, df-clel 2816 }). Indeed, denote by (i) the formula proved by "eliminablei". One sees that the RHS of (1) has no class terms, the RHS's of (2x) have only class terms of the form dealt with by (1), and the RHS's of (3x) have only class terms of the forms dealt with by (1) and (2a). Note that in order to prove eliminable2a 36861, eliminable2b 36862 and eliminable3a 36864, we need to substitute a class variable for a setvar variable. This is possible because setvars are class terms: this is the content of the syntactic theorem cv 1539, which is used in these proofs (this does not appear in the html pages but it is in the set.mm file and you can check it using the Metamath program).) The induction step relies on the fact that any formula is a FOL-combination of atomic formulas, so if one found equivalents for all atomic formulas constituting the formula, then the same FOL-combination of these equivalents will be equivalent to the original formula. Note that one has a slightly more precise result: if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥 ∣ 𝜑}, then df-clab 2715 is sufficient (over FOL) to eliminate class terms, and if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥 ∣ 𝜑} and equalities, then df-clab 2715, ax-ext 2708 and df-cleq 2729 are sufficient (over FOL) to eliminate class terms. To prove that { df-clab 2715, df-cleq 2729, df-clel 2816 } provides a definitional extension of {FOL, ax-ext 2708 }, one needs to prove both the above Eliminability Theorem, which compares the expressive powers of the languages with and without class terms, and the Conservativity Theorem, which compares the deductive powers when one adds { df-clab 2715, df-cleq 2729, df-clel 2816 }. It states that a formula without class terms is provable in one axiom system if and only if it is provable in the other, and that this remains true when one adds further definitions to {FOL, ax-ext 2708 }. It is also proved in op. cit. The proof is more difficult, since one has to construct for each proof of a statement without class terms, an associated proof not using { df-clab 2715, df-cleq 2729, df-clel 2816 }. It involves a careful case study on the structure of the proof tree. | ||
| Theorem | eliminable1 36860 | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | eliminable2a 36861* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = {𝑦 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) | ||
| Theorem | eliminable2b 36862* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ 𝑦)) | ||
| Theorem | eliminable2c 36863* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓})) | ||
| Theorem | eliminable3a 36864* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ 𝑦)) | ||
| Theorem | eliminable3b 36865* | A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ {𝑦 ∣ 𝜓})) | ||
| Theorem | eliminable-velab 36866 | A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | ||
| Theorem | eliminable-veqab 36867* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): variable equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = {𝑦 ∣ 𝜑} ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ [𝑧 / 𝑦]𝜑)) | ||
| Theorem | eliminable-abeqv 36868* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals variable. (Contributed by BJ, 30-Apr-2024.) Beware not to use symmetry of class equality. (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = 𝑦 ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ 𝑦)) | ||
| Theorem | eliminable-abeqab 36869* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction equals abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} ↔ ∀𝑧([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓)) | ||
| Theorem | eliminable-abelv 36870* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to variable. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑦 ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ 𝑧 ∈ 𝑦)) | ||
| Theorem | eliminable-abelab 36871* | A theorem used to prove the base case of the Eliminability Theorem (see section comment): abstraction belongs to abstraction. (Contributed by BJ, 30-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(∀𝑡(𝑡 ∈ 𝑧 ↔ [𝑡 / 𝑥]𝜑) ∧ [𝑧 / 𝑦]𝜓)) | ||
A few results about classes can be proved without using ax-ext 2708. One could move all theorems from cab 2714 to df-clel 2816 (except for dfcleq 2730 and cvjust 2731) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2729. Note that without ax-ext 2708, the $a-statements df-clab 2715, df-cleq 2729, and df-clel 2816 are no longer eliminable (see previous section) (but PROBABLY df-clab 2715 is still conservative , while df-cleq 2729 and df-clel 2816 are not). This is not a reason not to study what is provable with them but without ax-ext 2708, in order to gauge their strengths more precisely. Before that subsection, a subsection "The membership predicate" could group the statements with ∈ that are currently in the FOL part (including wcel 2108, wel 2109, ax-8 2110, ax-9 2118). Remark: the weakening of eleq1 2829 / eleq2 2830 to eleq1w 2824 / eleq2w 2825 can also be done with eleq1i 2832, eqeltri 2837, eqeltrri 2838, eleq1a 2836, eleq1d 2826, eqeltrd 2841, eqeltrrd 2842, eqneltrd 2861, eqneltrrd 2862, nelneq 2865. Remark: possibility to remove dependency on ax-10 2141, ax-11 2157, ax-13 2377 from nfcri 2897 and theorems using it if one adds a disjoint variable condition (that theorem is typically used with dummy variables, so the disjoint variable condition addition is not very restrictive), and then shorten nfnfc 2918. | ||
| Theorem | bj-denoteslem 36872* |
Duplicate of issettru 2819 and bj-issettruALTV 36874.
Lemma for bj-denotesALTV 36873. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
| Theorem | bj-denotesALTV 36873* |
Moved to main as iseqsetv-clel 2820 and kept for the comments.
This would be the justification theorem for the definition of the unary predicate "E!" by ⊢ ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be interpreted as "𝐴 exists" (as a set) or "𝐴 denotes" (in the sense of free logic). A shorter proof using bitri 275 (to add an intermediate proposition ∃𝑧𝑧 = 𝐴 with a fresh 𝑧), cbvexvw 2036, and eqeq1 2741, requires the core axioms and { ax-9 2118, ax-ext 2708, df-cleq 2729 } whereas this proof requires the core axioms and { ax-8 2110, df-clab 2715, df-clel 2816 }. Theorem bj-issetwt 36876 proves that "existing" is equivalent to being a member of a class abstraction. It also requires, with the present proof, { ax-8 2110, df-clab 2715, df-clel 2816 } (whereas with the shorter proof from cbvexvw 2036 and eqeq1 2741 it would require { ax-8 2110, ax-9 2118, ax-ext 2708, df-clab 2715, df-cleq 2729, df-clel 2816 }). That every class is equal to a class abstraction is proved by abid1 2878, which requires { ax-8 2110, ax-9 2118, ax-ext 2708, df-clab 2715, df-cleq 2729, df-clel 2816 }. Note that there is no disjoint variable condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2377. Actually, the proof depends only on the logical axioms ax-1 6 through ax-7 2007 and sp 2183. The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of nonexistent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: these are derived from ax-ext 2708 and df-cleq 2729 (e.g., eqid 2737 and eqeq1 2741). In particular, one cannot even prove ⊢ ∃𝑥𝑥 = 𝐴 ⇒ ⊢ 𝐴 = 𝐴 without ax-ext 2708 and df-cleq 2729. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴) | ||
| Theorem | bj-issettruALTV 36874* |
Moved to main as issettru 2819 and kept for the comments.
Weak version of isset 3494 without ax-ext 2708. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
| Theorem | bj-elabtru 36875 | This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2708. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | ||
| Theorem | bj-issetwt 36876* | Closed form of bj-issetw 36877. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴)) | ||
| Theorem | bj-issetw 36877* | The closest one can get to isset 3494 without using ax-ext 2708. See also vexw 2720. Note that the only disjoint variable condition is between 𝑦 and 𝐴. From there, one can prove isset 3494 using eleq2i 2833 (which requires ax-ext 2708 and df-cleq 2729). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 = 𝐴) | ||
| Theorem | bj-issetiv 36878* | Version of bj-isseti 36879 with a disjoint variable condition on 𝑥, 𝑉. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general than isseti 3498 as long as elex 3501 is not available (and the non-dependence of bj-issetiv 36878 on special properties of the universal class V is obvious). Prefer its use over bj-isseti 36879 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | bj-isseti 36879* | Version of isseti 3498 with a class variable 𝑉 in the hypothesis instead of V for extra generality. This is indeed more general than isseti 3498 as long as elex 3501 is not available (and the non-dependence of bj-isseti 36879 on special properties of the universal class V is obvious). Use bj-issetiv 36878 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∃𝑥 𝑥 = 𝐴 | ||
| Theorem | bj-ralvw 36880 | A weak version of ralv 3508 not using ax-ext 2708 (nor df-cleq 2729, df-clel 2816, df-v 3482), and only core FOL axioms. See also bj-rexvw 36881. The analogues for reuv 3510 and rmov 3511 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ 𝜓 ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∀𝑥𝜑) | ||
| Theorem | bj-rexvw 36881 | A weak version of rexv 3509 not using ax-ext 2708 (nor df-cleq 2729, df-clel 2816, df-v 3482), and only core FOL axioms. See also bj-ralvw 36880. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ 𝜓 ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) | ||
| Theorem | bj-rababw 36882 | A weak version of rabab 3512 not using df-clel 2816 nor df-v 3482 (but requiring ax-ext 2708) nor ax-12 2177. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ 𝜓 ⇒ ⊢ {𝑥 ∈ {𝑦 ∣ 𝜓} ∣ 𝜑} = {𝑥 ∣ 𝜑} | ||
| Theorem | bj-rexcom4bv 36883* | Version of rexcom4b 3513 and bj-rexcom4b 36884 with a disjoint variable condition on 𝑥, 𝑉, hence removing dependency on df-sb 2065 and df-clab 2715 (so that it depends on df-clel 2816 and df-rex 3071 only on top of first-order logic). Prefer its use over bj-rexcom4b 36884 when sufficient (in particular when 𝑉 is substituted for V). Note the 𝑉 in the hypothesis instead of V. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐵 ∈ 𝑉 ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | bj-rexcom4b 36884* | Remove from rexcom4b 3513 dependency on ax-ext 2708 and ax-13 2377 (and on df-or 849, df-cleq 2729, df-nfc 2892, df-v 3482). The hypothesis uses 𝑉 instead of V (see bj-isseti 36879 for the motivation). Use bj-rexcom4bv 36883 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐵 ∈ 𝑉 ⇒ ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | bj-ceqsalt0 36885 | The FOL content of ceqsalt 3515. Lemma for bj-ceqsalt 36887 and bj-ceqsaltv 36888. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalt1 36886 | The FOL content of ceqsalt 3515. Lemma for bj-ceqsalt 36887 and bj-ceqsaltv 36888. TODO: consider removing if it does not add anything to bj-ceqsalt0 36885. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜃 → ∃𝑥𝜒) ⇒ ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalt 36887* | Remove from ceqsalt 3515 dependency on ax-ext 2708 (and on df-cleq 2729 and df-v 3482). Note: this is not doable with ceqsralt 3516 (or ceqsralv 3522), which uses eleq1 2829, but the same dependence removal is possible for ceqsalg 3517, ceqsal 3519, ceqsalv 3521, cgsexg 3526, cgsex2g 3527, cgsex4g 3528, ceqsex 3530, ceqsexv 3532, ceqsex2 3535, ceqsex2v 3536, ceqsex3v 3537, ceqsex4v 3538, ceqsex6v 3539, ceqsex8v 3540, gencbvex 3541 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3542, gencbval 3543, vtoclgft 3552 (it uses Ⅎ, whose justification nfcjust 2891 does not use ax-ext 2708) and several other vtocl* theorems (see for instance bj-vtoclg1f 36919). See also bj-ceqsaltv 36888. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsaltv 36888* | Version of bj-ceqsalt 36887 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2065 and df-clab 2715. Prefer its use over bj-ceqsalt 36887 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalg0 36889 | The FOL content of ceqsalg 3517. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝜒 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜒 → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalg 36890* | Remove from ceqsalg 3517 dependency on ax-ext 2708 (and on df-cleq 2729 and df-v 3482). See also bj-ceqsalgv 36892. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalgALT 36891* | Alternate proof of bj-ceqsalg 36890. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalgv 36892* | Version of bj-ceqsalg 36890 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2065 and df-clab 2715. Prefer its use over bj-ceqsalg 36890 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsalgvALT 36893* | Alternate proof of bj-ceqsalgv 36892. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | ||
| Theorem | bj-ceqsal 36894* | Remove from ceqsal 3519 dependency on ax-ext 2708 (and on df-cleq 2729, df-v 3482, df-clab 2715, df-sb 2065). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | bj-ceqsalv 36895* | Remove from ceqsalv 3521 dependency on ax-ext 2708 (and on df-cleq 2729, df-v 3482, df-clab 2715, df-sb 2065). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | ||
| Theorem | bj-spcimdv 36896* | Remove from spcimdv 3593 dependency on ax-9 2118, ax-10 2141, ax-11 2157, ax-13 2377, ax-ext 2708, df-cleq 2729 (and df-nfc 2892, df-v 3482, df-or 849, df-tru 1543, df-nf 1784). For an even more economical version, see bj-spcimdvv 36897. (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | bj-spcimdvv 36897* | Remove from spcimdv 3593 dependency on ax-7 2007, ax-8 2110, ax-10 2141, ax-11 2157, ax-12 2177 ax-13 2377, ax-ext 2708, df-cleq 2729, df-clab 2715 (and df-nfc 2892, df-v 3482, df-or 849, df-tru 1543, df-nf 1784) at the price of adding a disjoint variable condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this disjoint variable condition, see bj-spcimdv 36896. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) | ||
| Theorem | elelb 36898 | Equivalence between two common ways to characterize elements of a class 𝐵: the LHS says that sets are elements of 𝐵 if and only if they satisfy 𝜑 while the RHS says that classes are elements of 𝐵 if and only if they are sets and satisfy 𝜑. Therefore, the LHS is a characterization among sets while the RHS is a characterization among classes. Note that the LHS is often formulated using a class variable instead of the universe V while this is not possible for the RHS (apart from using 𝐵 itself, which would not be very useful). (Contributed by BJ, 26-Feb-2023.) |
| ⊢ ((𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜑)) ↔ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜑))) | ||
| Theorem | bj-pwvrelb 36899 | Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.) |
| ⊢ (𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴)) | ||
In this section, we prove the symmetry of the nonfreeness quantifier for classes. | ||
| Theorem | bj-nfcsym 36900 | The nonfreeness quantifier for classes defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 5375 with additional axioms; see also nfcv 2905). This could be proved from aecom 2432 and nfcvb 5376 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2743 instead of equcomd 2018; removing dependency on ax-ext 2708 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2925, eleq2d 2827 (using elequ2 2123), nfcvf 2932, dvelimc 2931, dvelimdc 2930, nfcvf2 2933. (Proof modification is discouraged.) |
| ⊢ (Ⅎ𝑥𝑦 ↔ Ⅎ𝑦𝑥) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |