Home | Metamath
Proof Explorer Theorem List (p. 369 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dffunsALTV 36801 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
Theorem | dffunsALTV2 36802 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
Theorem | dffunsALTV3 36803* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
Theorem | dffunsALTV4 36804* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
Theorem | dffunsALTV5 36805* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
Theorem | dffunALTV2 36806 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 36832. (Contributed by Peter Mazsa, 8-Feb-2018.) |
⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
Theorem | dffunALTV3 36807* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 36833. Reproduction of dffun2 6447. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
Theorem | dffunALTV4 36808* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 36834. This is dffun6 6449. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
Theorem | dffunALTV5 36809* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 36835. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
Theorem | elfunsALTV 36810 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV2 36811 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV3 36812* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV4 36813* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV5 36814* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTVfunALTV 36815 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
Theorem | funALTVfun 36816 | Our definition of the function predicate df-funALTV 36800 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6439, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
Theorem | funALTVss 36817 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
Theorem | funALTVeq 36818 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Theorem | funALTVeqi 36819 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
Theorem | funALTVeqd 36820 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Definition | df-disjss 36821 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 36822). It is used only by df-disjs 36822. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
Definition | df-disjs 36822 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 36831).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36845. Alternate definitions are dfdisjs 36826, ... , dfdisjs5 36830. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjs = ( Disjss ∩ Rels ) | ||
Definition | df-disjALTV 36823 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 36831,
see the comment of df-disjs 36822 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 36845. Alternate definitions are dfdisjALTV 36831, ... , dfdisjALTV5 36835. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
Definition | df-eldisjs 36824 | Define the disjoint elementhood relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 36847. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
Definition | df-eldisj 36825 |
Define the disjoint elementhood relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 36847.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 36893 with dfeldisj5 36839. See also the comments of ~? dfmembpart2 and of ~? df-parts . (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
Theorem | dfdisjs 36826 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
Theorem | dfdisjs2 36827 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | ||
Theorem | dfdisjs3 36828* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢∀𝑣∀𝑥((𝑢𝑟𝑥 ∧ 𝑣𝑟𝑥) → 𝑢 = 𝑣)} | ||
Theorem | dfdisjs4 36829* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} | ||
Theorem | dfdisjs5 36830* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} | ||
Theorem | dfdisjALTV 36831 | Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 36822 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV2 36832 | Alternate definition of the disjoint relation predicate, cf. dffunALTV2 36806. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV3 36833* | Alternate definition of the disjoint relation predicate, cf. dffunALTV3 36807. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV4 36834* | Alternate definition of the disjoint relation predicate, cf. dffunALTV4 36808. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV5 36835* | Alternate definition of the disjoint relation predicate, cf. dffunALTV5 36809. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | dfeldisj2 36836 | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) | ||
Theorem | dfeldisj3 36837* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) | ||
Theorem | dfeldisj4 36838* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | ||
Theorem | dfeldisj5 36839* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) | ||
Theorem | eldisjs 36840 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs2 36841 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs3 36842* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs4 36843* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs5 36844* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) | ||
Theorem | eldisjsdisj 36845 | The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | ||
Theorem | eleldisjs 36846 | Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | ||
Theorem | eleldisjseldisj 36847 | The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) | ||
Theorem | disjrel 36848 | Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
⊢ ( Disj 𝑅 → Rel 𝑅) | ||
Theorem | disjss 36849 | Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjssi 36850 | Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( Disj 𝐵 → Disj 𝐴) | ||
Theorem | disjssd 36851 | Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjeq 36852 | Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjeqi 36853 | Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( Disj 𝐴 ↔ Disj 𝐵) | ||
Theorem | disjeqd 36854 | Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjdmqseqeq1 36855 | Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
Theorem | eldisjss 36856 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjssi 36857 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
Theorem | eldisjssd 36858 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjeq 36859 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | eldisjeqi 36860 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
Theorem | eldisjeqd 36861 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | disjxrn 36862 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
Theorem | disjorimxrn 36863 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimxrn 36864 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimres 36865 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
Theorem | disjimin 36866 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
Theorem | disjiminres 36867 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
Theorem | disjimxrnres 36868 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
Theorem | disjALTV0 36869 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ∅ | ||
Theorem | disjALTVid 36870 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
⊢ Disj I | ||
Theorem | disjALTVidres 36871 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ( I ↾ 𝐴) | ||
Theorem | disjALTVinidres 36872 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
Theorem | disjALTVxrnidres 36873 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
Theorem | prtlem60 36874 | Lemma for prter3 36903. (Contributed by Rodolfo Medina, 9-Oct-2010.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) | ||
Theorem | bicomdd 36875 | Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ↔ 𝜒))) | ||
Theorem | jca2r 36876 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) | ||
Theorem | jca3 36877 | Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) | ||
Theorem | prtlem70 36878 | Lemma for prter3 36903: a rearrangement of conjuncts. (Contributed by Rodolfo Medina, 20-Oct-2010.) |
⊢ ((((𝜓 ∧ 𝜂) ∧ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜏))) ∧ 𝜑) ↔ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ (𝜃 ∧ 𝜏)))) ∧ 𝜂)) | ||
Theorem | ibdr 36879 | Reverse of ibd 268. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
⊢ (𝜑 → (𝜒 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜓)) | ||
Theorem | prtlem100 36880 | Lemma for prter3 36903. (Contributed by Rodolfo Medina, 19-Oct-2010.) |
⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) | ||
Theorem | prtlem5 36881* | Lemma for prter1 36900, prter2 36902, prter3 36903 and prtex 36901. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝑠 / 𝑣][𝑟 / 𝑢]∃𝑥 ∈ 𝐴 (𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 (𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥)) | ||
Theorem | prtlem80 36882 | Lemma for prter2 36902. (Contributed by Rodolfo Medina, 17-Oct-2010.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | ||
Theorem | brabsb2 36883* | A closed form of brabsb 5445. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | eqbrrdv2 36884* | Other version of eqbrrdiv 5706. (Contributed by Rodolfo Medina, 30-Sep-2010.) |
⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦)) ⇒ ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) | ||
Theorem | prtlem9 36885* | Lemma for prter3 36903. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
⊢ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 [𝑥] ∼ = [𝐴] ∼ ) | ||
Theorem | prtlem10 36886* | Lemma for prter3 36903. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ( ∼ Er 𝐴 → (𝑧 ∈ 𝐴 → (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ [𝑣] ∼ ∧ 𝑤 ∈ [𝑣] ∼ )))) | ||
Theorem | prtlem11 36887 | Lemma for prter2 36902. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) | ||
Theorem | prtlem12 36888* | Lemma for prtex 36901 and prter3 36903. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) | ||
Theorem | prtlem13 36889* | Lemma for prter1 36900, prter2 36902, prter3 36903 and prtex 36901. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) | ||
Theorem | prtlem16 36890* | Lemma for prtex 36901, prter2 36902 and prter3 36903. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ dom ∼ = ∪ 𝐴 | ||
Theorem | prtlem400 36891* | Lemma for prter2 36902 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) | ||
Syntax | wprt 36892 | Extend the definition of a wff to include the partition predicate. |
wff Prt 𝐴 | ||
Definition | df-prt 36893* | Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | ||
Theorem | erprt 36894 | The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) | ||
Theorem | prtlem14 36895* | Lemma for prter1 36900, prter2 36902 and prtex 36901. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) | ||
Theorem | prtlem15 36896* | Lemma for prter1 36900 and prtex 36901. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
⊢ (Prt 𝐴 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) ∧ (𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦)) → ∃𝑧 ∈ 𝐴 (𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧))) | ||
Theorem | prtlem17 36897* | Lemma for prter2 36902. (Contributed by Rodolfo Medina, 15-Oct-2010.) |
⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → (∃𝑦 ∈ 𝐴 (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝑥))) | ||
Theorem | prtlem18 36898* | Lemma for prter2 36902. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) | ||
Theorem | prtlem19 36899* | Lemma for prter2 36902. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) | ||
Theorem | prter1 36900* | Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} ⇒ ⊢ (Prt 𝐴 → ∼ Er ∪ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |