| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfld2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| isfld2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddivrng 38112 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | |
| 2 | fldcrngo 38117 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| 4 | iscrngo 38109 | . . . 4 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ Com2) |
| 6 | elin 3914 | . . . . 5 ⊢ (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) | |
| 7 | 6 | biimpri 228 | . . . 4 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2)) |
| 8 | df-fld 38105 | . . . 4 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 9 | 7, 8 | eleqtrrdi 2844 | . . 3 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld) |
| 10 | 5, 9 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld) |
| 11 | 3, 10 | impbii 209 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∩ cin 3897 RingOpscrngo 38007 DivRingOpscdrng 38061 Com2ccm2 38102 Fldcfld 38104 CRingOpsccring 38106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-1st 7930 df-2nd 7931 df-drngo 38062 df-fld 38105 df-crngo 38107 |
| This theorem is referenced by: flddmn 38171 isfldidl 38181 |
| Copyright terms: Public domain | W3C validator |