| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfld2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| isfld2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flddivrng 37998 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | |
| 2 | fldcrngo 38003 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| 4 | iscrngo 37995 | . . . 4 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ Com2) |
| 6 | elin 3921 | . . . . 5 ⊢ (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) | |
| 7 | 6 | biimpri 228 | . . . 4 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2)) |
| 8 | df-fld 37991 | . . . 4 ⊢ Fld = (DivRingOps ∩ Com2) | |
| 9 | 7, 8 | eleqtrrdi 2839 | . . 3 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld) |
| 10 | 5, 9 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld) |
| 11 | 3, 10 | impbii 209 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 RingOpscrngo 37893 DivRingOpscdrng 37947 Com2ccm2 37988 Fldcfld 37990 CRingOpsccring 37992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-2nd 7932 df-drngo 37948 df-fld 37991 df-crngo 37993 |
| This theorem is referenced by: flddmn 38057 isfldidl 38067 |
| Copyright terms: Public domain | W3C validator |