Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfld2 Structured version   Visualization version   GIF version

Theorem isfld2 36861
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isfld2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))

Proof of Theorem isfld2
StepHypRef Expression
1 flddivrng 36855 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
2 fldcrngo 36860 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
31, 2jca 512 . 2 (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 iscrngo 36852 . . . 4 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
54simprbi 497 . . 3 (𝐾 ∈ CRingOps → 𝐾 ∈ Com2)
6 elin 3963 . . . . 5 (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
76biimpri 227 . . . 4 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2))
8 df-fld 36848 . . . 4 Fld = (DivRingOps ∩ Com2)
97, 8eleqtrrdi 2844 . . 3 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld)
105, 9sylan2 593 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld)
113, 10impbii 208 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  cin 3946  RingOpscrngo 36750  DivRingOpscdrng 36804  Com2ccm2 36845  Fldcfld 36847  CRingOpsccring 36849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-1st 7971  df-2nd 7972  df-drngo 36805  df-fld 36848  df-crngo 36850
This theorem is referenced by:  flddmn  36914  isfldidl  36924
  Copyright terms: Public domain W3C validator