Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfld2 Structured version   Visualization version   GIF version

Theorem isfld2 38004
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isfld2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))

Proof of Theorem isfld2
StepHypRef Expression
1 flddivrng 37998 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
2 fldcrngo 38003 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
31, 2jca 511 . 2 (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 iscrngo 37995 . . . 4 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
54simprbi 496 . . 3 (𝐾 ∈ CRingOps → 𝐾 ∈ Com2)
6 elin 3921 . . . . 5 (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
76biimpri 228 . . . 4 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2))
8 df-fld 37991 . . . 4 Fld = (DivRingOps ∩ Com2)
97, 8eleqtrrdi 2839 . . 3 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld)
105, 9sylan2 593 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld)
113, 10impbii 209 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3904  RingOpscrngo 37893  DivRingOpscdrng 37947  Com2ccm2 37988  Fldcfld 37990  CRingOpsccring 37992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7931  df-2nd 7932  df-drngo 37948  df-fld 37991  df-crngo 37993
This theorem is referenced by:  flddmn  38057  isfldidl  38067
  Copyright terms: Public domain W3C validator