![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfld2 | Structured version Visualization version GIF version |
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isfld2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddivrng 37959 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | |
2 | fldcrngo 37964 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
4 | iscrngo 37956 | . . . 4 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ Com2) |
6 | elin 3992 | . . . . 5 ⊢ (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) | |
7 | 6 | biimpri 228 | . . . 4 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2)) |
8 | df-fld 37952 | . . . 4 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 7, 8 | eleqtrrdi 2855 | . . 3 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld) |
10 | 5, 9 | sylan2 592 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld) |
11 | 3, 10 | impbii 209 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 RingOpscrngo 37854 DivRingOpscdrng 37908 Com2ccm2 37949 Fldcfld 37951 CRingOpsccring 37953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 df-drngo 37909 df-fld 37952 df-crngo 37954 |
This theorem is referenced by: flddmn 38018 isfldidl 38028 |
Copyright terms: Public domain | W3C validator |