![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfld2 | Structured version Visualization version GIF version |
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
isfld2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddivrng 36855 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | |
2 | fldcrngo 36860 | . . 3 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
4 | iscrngo 36852 | . . . 4 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ Com2) |
6 | elin 3963 | . . . . 5 ⊢ (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) | |
7 | 6 | biimpri 227 | . . . 4 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2)) |
8 | df-fld 36848 | . . . 4 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 7, 8 | eleqtrrdi 2844 | . . 3 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld) |
10 | 5, 9 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld) |
11 | 3, 10 | impbii 208 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∩ cin 3946 RingOpscrngo 36750 DivRingOpscdrng 36804 Com2ccm2 36845 Fldcfld 36847 CRingOpsccring 36849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-1st 7971 df-2nd 7972 df-drngo 36805 df-fld 36848 df-crngo 36850 |
This theorem is referenced by: flddmn 36914 isfldidl 36924 |
Copyright terms: Public domain | W3C validator |