Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfld2 Structured version   Visualization version   GIF version

Theorem isfld2 38118
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isfld2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))

Proof of Theorem isfld2
StepHypRef Expression
1 flddivrng 38112 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
2 fldcrngo 38117 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
31, 2jca 511 . 2 (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 iscrngo 38109 . . . 4 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
54simprbi 496 . . 3 (𝐾 ∈ CRingOps → 𝐾 ∈ Com2)
6 elin 3914 . . . . 5 (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
76biimpri 228 . . . 4 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2))
8 df-fld 38105 . . . 4 Fld = (DivRingOps ∩ Com2)
97, 8eleqtrrdi 2844 . . 3 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld)
105, 9sylan2 593 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld)
113, 10impbii 209 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  cin 3897  RingOpscrngo 38007  DivRingOpscdrng 38061  Com2ccm2 38102  Fldcfld 38104  CRingOpsccring 38106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fv 6497  df-1st 7930  df-2nd 7931  df-drngo 38062  df-fld 38105  df-crngo 38107
This theorem is referenced by:  flddmn  38171  isfldidl  38181
  Copyright terms: Public domain W3C validator