Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfld2 Structured version   Visualization version   GIF version

Theorem isfld2 37992
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isfld2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))

Proof of Theorem isfld2
StepHypRef Expression
1 flddivrng 37986 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
2 fldcrngo 37991 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
31, 2jca 511 . 2 (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 iscrngo 37983 . . . 4 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
54simprbi 496 . . 3 (𝐾 ∈ CRingOps → 𝐾 ∈ Com2)
6 elin 3979 . . . . 5 (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
76biimpri 228 . . . 4 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2))
8 df-fld 37979 . . . 4 Fld = (DivRingOps ∩ Com2)
97, 8eleqtrrdi 2850 . . 3 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld)
105, 9sylan2 593 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld)
113, 10impbii 209 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  cin 3962  RingOpscrngo 37881  DivRingOpscdrng 37935  Com2ccm2 37976  Fldcfld 37978  CRingOpsccring 37980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-2nd 8014  df-drngo 37936  df-fld 37979  df-crngo 37981
This theorem is referenced by:  flddmn  38045  isfldidl  38055
  Copyright terms: Public domain W3C validator