Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfld2 Structured version   Visualization version   GIF version

Theorem isfld2 38006
Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
isfld2 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))

Proof of Theorem isfld2
StepHypRef Expression
1 flddivrng 38000 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
2 fldcrngo 38005 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
31, 2jca 511 . 2 (𝐾 ∈ Fld → (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
4 iscrngo 37997 . . . 4 (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2))
54simprbi 496 . . 3 (𝐾 ∈ CRingOps → 𝐾 ∈ Com2)
6 elin 3933 . . . . 5 (𝐾 ∈ (DivRingOps ∩ Com2) ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2))
76biimpri 228 . . . 4 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ (DivRingOps ∩ Com2))
8 df-fld 37993 . . . 4 Fld = (DivRingOps ∩ Com2)
97, 8eleqtrrdi 2840 . . 3 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → 𝐾 ∈ Fld)
105, 9sylan2 593 . 2 ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps) → 𝐾 ∈ Fld)
113, 10impbii 209 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3916  RingOpscrngo 37895  DivRingOpscdrng 37949  Com2ccm2 37990  Fldcfld 37992  CRingOpsccring 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972  df-drngo 37950  df-fld 37993  df-crngo 37995
This theorem is referenced by:  flddmn  38059  isfldidl  38069
  Copyright terms: Public domain W3C validator