MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23858
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23853 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3444 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1539 . . . . . 6 class 𝑓
76cdm 5631 . . . . 5 class dom 𝑓
8 cfbas 21284 . . . . 5 class fBas
97, 8cfv 6499 . . . 4 class (fBas‘dom 𝑓)
102cv 1539 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1539 . . . . . . 7 class 𝑦
1311cv 1539 . . . . . . . 8 class 𝑡
146, 13cima 5634 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5183 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5632 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 21285 . . . . 5 class filGen
1810, 16, 17co 7369 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5183 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7371 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1540 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23863  fmf  23865
  Copyright terms: Public domain W3C validator