MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23967
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23962 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3488 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1536 . . . . . 6 class 𝑓
76cdm 5700 . . . . 5 class dom 𝑓
8 cfbas 21375 . . . . 5 class fBas
97, 8cfv 6573 . . . 4 class (fBas‘dom 𝑓)
102cv 1536 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1536 . . . . . . 7 class 𝑦
1311cv 1536 . . . . . . . 8 class 𝑡
146, 13cima 5703 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5249 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5701 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 21376 . . . . 5 class filGen
1810, 16, 17co 7448 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5249 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7450 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1537 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23972  fmf  23974
  Copyright terms: Public domain W3C validator