MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23874
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23869 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3459 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1539 . . . . . 6 class 𝑓
76cdm 5654 . . . . 5 class dom 𝑓
8 cfbas 21301 . . . . 5 class fBas
97, 8cfv 6530 . . . 4 class (fBas‘dom 𝑓)
102cv 1539 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1539 . . . . . . 7 class 𝑦
1311cv 1539 . . . . . . . 8 class 𝑡
146, 13cima 5657 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5201 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5655 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 21302 . . . . 5 class filGen
1810, 16, 17co 7403 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5201 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7405 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1540 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23879  fmf  23881
  Copyright terms: Public domain W3C validator