MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23853
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23848 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3436 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1540 . . . . . 6 class 𝑓
76cdm 5614 . . . . 5 class dom 𝑓
8 cfbas 21279 . . . . 5 class fBas
97, 8cfv 6481 . . . 4 class (fBas‘dom 𝑓)
102cv 1540 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1540 . . . . . . 7 class 𝑦
1311cv 1540 . . . . . . . 8 class 𝑡
146, 13cima 5617 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5170 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5615 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 21280 . . . . 5 class filGen
1810, 16, 17co 7346 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5170 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7348 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1541 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23858  fmf  23860
  Copyright terms: Public domain W3C validator