MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 22997
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 22992 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3422 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1538 . . . . . 6 class 𝑓
76cdm 5580 . . . . 5 class dom 𝑓
8 cfbas 20498 . . . . 5 class fBas
97, 8cfv 6418 . . . 4 class (fBas‘dom 𝑓)
102cv 1538 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1538 . . . . . . 7 class 𝑦
1311cv 1538 . . . . . . . 8 class 𝑡
146, 13cima 5583 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5153 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5581 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 20499 . . . . 5 class filGen
1810, 16, 17co 7255 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5153 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7257 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1539 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23002  fmf  23004
  Copyright terms: Public domain W3C validator