MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23098
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23093 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3433 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1538 . . . . . 6 class 𝑓
76cdm 5590 . . . . 5 class dom 𝑓
8 cfbas 20594 . . . . 5 class fBas
97, 8cfv 6437 . . . 4 class (fBas‘dom 𝑓)
102cv 1538 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1538 . . . . . . 7 class 𝑦
1311cv 1538 . . . . . . . 8 class 𝑡
146, 13cima 5593 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5158 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5591 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 20595 . . . . 5 class filGen
1810, 16, 17co 7284 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5158 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7286 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1539 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23103  fmf  23105
  Copyright terms: Public domain W3C validator