MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   GIF version

Definition df-fm 23087
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Distinct variable group:   𝑡,𝑓,𝑥,𝑦

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 23082 . 2 class FilMap
2 vx . . 3 setvar 𝑥
3 vf . . 3 setvar 𝑓
4 cvv 3431 . . 3 class V
5 vy . . . 4 setvar 𝑦
63cv 1541 . . . . . 6 class 𝑓
76cdm 5590 . . . . 5 class dom 𝑓
8 cfbas 20583 . . . . 5 class fBas
97, 8cfv 6432 . . . 4 class (fBas‘dom 𝑓)
102cv 1541 . . . . 5 class 𝑥
11 vt . . . . . . 7 setvar 𝑡
125cv 1541 . . . . . . 7 class 𝑦
1311cv 1541 . . . . . . . 8 class 𝑡
146, 13cima 5593 . . . . . . 7 class (𝑓𝑡)
1511, 12, 14cmpt 5162 . . . . . 6 class (𝑡𝑦 ↦ (𝑓𝑡))
1615crn 5591 . . . . 5 class ran (𝑡𝑦 ↦ (𝑓𝑡))
17 cfg 20584 . . . . 5 class filGen
1810, 16, 17co 7271 . . . 4 class (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))
195, 9, 18cmpt 5162 . . 3 class (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡))))
202, 3, 4, 4, 19cmpo 7273 . 2 class (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
211, 20wceq 1542 1 wff FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
Colors of variables: wff setvar class
This definition is referenced by:  fmval  23092  fmf  23094
  Copyright terms: Public domain W3C validator