| Metamath
Proof Explorer Theorem List (p. 235 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-locfin 23401* | Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) | ||
| Theorem | refrel 23402 | Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ Rel Ref | ||
| Theorem | isref 23403* | The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 36334. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) | ||
| Theorem | refbas 23404 | A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) | ||
| Theorem | refssex 23405* | Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) | ||
| Theorem | ssref 23406 | A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) | ||
| Theorem | refref 23407 | Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) | ||
| Theorem | reftr 23408 | Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴Ref𝐶) | ||
| Theorem | refun0 23409 | Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) | ||
| Theorem | isptfin 23410* | The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | ||
| Theorem | islocfin 23411* | The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) | ||
| Theorem | finptfin 23412 | A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) | ||
| Theorem | ptfinfin 23413* | A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) | ||
| Theorem | finlocfin 23414 | A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) | ||
| Theorem | locfintop 23415 | A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) | ||
| Theorem | locfinbas 23416 | A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) | ||
| Theorem | locfinnei 23417* | A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) | ||
| Theorem | lfinpfin 23418 | A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) | ||
| Theorem | lfinun 23419 | Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽) → (𝐴 ∪ 𝐵) ∈ (LocFin‘𝐽)) | ||
| Theorem | locfincmp 23420 | For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) | ||
| Theorem | unisngl 23421* | Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ 𝑋 = ∪ 𝐶 | ||
| Theorem | dissnref 23422* | The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋) → 𝐶Ref𝑌) | ||
| Theorem | dissnlocfin 23423* | The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐶 ∈ (LocFin‘𝒫 𝑋)) | ||
| Theorem | locfindis 23424 | The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌)) | ||
| Theorem | locfincf 23425 | A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾)) | ||
| Theorem | comppfsc 23426* | A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) | ||
| Syntax | ckgen 23427 | Extend class notation with the compact generator operation. |
| class 𝑘Gen | ||
| Definition | df-kgen 23428* | Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. 𝑥 ∈ (𝑘Gen‘𝑗), iff the preimage of 𝑥 is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | ||
| Theorem | kgenval 23429* | Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) | ||
| Theorem | elkgen 23430* | Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | ||
| Theorem | kgeni 23431 | Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐴 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | ||
| Theorem | kgentopon 23432 | The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋)) | ||
| Theorem | kgenuni 23433 | The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 = ∪ (𝑘Gen‘𝐽)) | ||
| Theorem | kgenftop 23434 | The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | ||
| Theorem | kgenf 23435 | The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑘Gen:Top⟶Top | ||
| Theorem | kgentop 23436 | A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | ||
| Theorem | kgenss 23437 | The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | ||
| Theorem | kgenhaus 23438 | The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus) | ||
| Theorem | kgencmp 23439 | The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) | ||
| Theorem | kgencmp2 23440 | The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → ((𝐽 ↾t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)) | ||
| Theorem | kgenidm 23441 | The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | ||
| Theorem | iskgen2 23442 | A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) | ||
| Theorem | iskgen3 23443* | Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | ||
| Theorem | llycmpkgen2 23444* | A locally compact space is compactly generated. (This variant of llycmpkgen 23446 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) ⇒ ⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | cmpkgen 23445 | A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | llycmpkgen 23446 | A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | 1stckgenlem 23447 | The one-point compactification of ℕ is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp) | ||
| Theorem | 1stckgen 23448 | A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | kgen2ss 23449 | The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾)) | ||
| Theorem | kgencn 23450* | A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) | ||
| Theorem | kgencn2 23451* | A function 𝐹:𝐽⟶𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧⟶𝐽, the composite 𝐹 ∘ 𝑔:𝑧⟶𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) | ||
| Theorem | kgencn3 23452 | The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾))) | ||
| Theorem | kgen2cn 23453 | A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | ||
| Syntax | ctx 23454 | Extend class notation with the binary topological product operation. |
| class ×t | ||
| Syntax | cxko 23455 | Extend class notation with a function whose value is the compact-open topology. |
| class ↑ko | ||
| Definition | df-tx 23456* | Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) | ||
| Definition | df-xko 23457* | Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ↑ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟 ∣ (𝑟 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | ||
| Theorem | txval 23458* | Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) | ||
| Theorem | txuni2 23459* | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 | ||
| Theorem | txbasex 23460* | The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) | ||
| Theorem | txbas 23461* | The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) | ||
| Theorem | eltx 23462* | A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) | ||
| Theorem | txtop 23463 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | ||
| Theorem | ptval 23464* | The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘𝐵)) | ||
| Theorem | ptpjpre1 23465* | The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.) |
| ⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) | ||
| Theorem | elpt 23466* | Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (𝑆 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) | ||
| Theorem | elptr 23467* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ 𝐵) | ||
| Theorem | elptr2 23468* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ 𝐵) | ||
| Theorem | ptbasid 23469* | The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) | ||
| Theorem | ptuni2 23470* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) | ||
| Theorem | ptbasin 23471* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∩ 𝑌) ∈ 𝐵) | ||
| Theorem | ptbasin2 23472* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) | ||
| Theorem | ptbas 23473* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) | ||
| Theorem | ptpjpre2 23474* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) | ||
| Theorem | ptbasfi 23475* | The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) | ||
| Theorem | pttop 23476 | The product topology is a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∏t‘𝐹) ∈ Top) | ||
| Theorem | ptopn 23477* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ (∏t‘𝐹)) | ||
| Theorem | ptopn2 23478* | A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) | ||
| Theorem | xkotf 23479* | Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) | ||
| Theorem | xkobval 23480* | Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | ||
| Theorem | xkoval 23481* | Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran 𝑇))) | ||
| Theorem | xkotop 23482 | The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) | ||
| Theorem | xkoopn 23483* | A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑅 ↾t 𝐴) ∈ Comp) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ (𝑆 ↑ko 𝑅)) | ||
| Theorem | txtopi 23484 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top ⇒ ⊢ (𝑅 ×t 𝑆) ∈ Top | ||
| Theorem | txtopon 23485 | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) | ||
| Theorem | txuni 23486 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | ||
| Theorem | txunii 23487 | The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) | ||
| Theorem | ptuni 23488* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘𝐹) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑥 ∈ 𝐴 ∪ (𝐹‘𝑥) = ∪ 𝐽) | ||
| Theorem | ptunimpt 23489* | Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) | ||
| Theorem | pttopon 23490* | The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) | ||
| Theorem | pttoponconst 23491 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘(𝑋 ↑m 𝐴))) | ||
| Theorem | ptuniconst 23492 | The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘(𝐴 × {𝑅})) & ⊢ 𝑋 = ∪ 𝑅 ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (𝑋 ↑m 𝐴) = ∪ 𝐽) | ||
| Theorem | xkouni 23493 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) | ||
| Theorem | xkotopon 23494 | The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ 𝐽 = (𝑆 ↑ko 𝑅) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ∈ (TopOn‘(𝑅 Cn 𝑆))) | ||
| Theorem | ptval2 23495* | The value of the product topology function. (Contributed by Mario Carneiro, 7-Feb-2015.) |
| ⊢ 𝐽 = (∏t‘𝐹) & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐺 = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐽 = (topGen‘(fi‘({𝑋} ∪ ran 𝐺)))) | ||
| Theorem | txopn 23496 | The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) | ||
| Theorem | txcld 23497 | The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝑅) ∧ 𝐵 ∈ (Clsd‘𝑆)) → (𝐴 × 𝐵) ∈ (Clsd‘(𝑅 ×t 𝑆))) | ||
| Theorem | txcls 23498 | Closure of a rectangle in the product topology. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) = (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) | ||
| Theorem | txss12 23499 | Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) | ||
| Theorem | txbasval 23500 | It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |