![]() |
Metamath
Proof Explorer Theorem List (p. 235 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sshauslem 23401 | Lemma for sshaus 23404 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then a topology finer than one with property 𝐴 also has property 𝐴. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) & ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋):𝑋–1-1→𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) ⇒ ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ 𝐴) | ||
Theorem | sst0 23402 | A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Kol2) | ||
Theorem | sst1 23403 | A topology finer than a T1 topology is T1. (Contributed by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Fre) | ||
Theorem | sshaus 23404 | A topology finer than a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → 𝐾 ∈ Haus) | ||
Theorem | regsep2 23405* | In a regular space, a closed set is separated by open sets from a point not in it. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) | ||
Theorem | isreg2 23406* | A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥 ∈ 𝑋 (¬ 𝑥 ∈ 𝑐 → ∃𝑜 ∈ 𝐽 ∃𝑝 ∈ 𝐽 (𝑐 ⊆ 𝑜 ∧ 𝑥 ∈ 𝑝 ∧ (𝑜 ∩ 𝑝) = ∅)))) | ||
Theorem | dnsconst 23407 | If a continuous mapping to a T1 space is constant on a dense subset, it is constant on the entire space. Note that ((cls‘𝐽)‘𝐴) = 𝑋 means "𝐴 is dense in 𝑋 " and 𝐴 ⊆ (◡𝐹 “ {𝑃}) means "𝐹 is constant on 𝐴 " (see funconstss 7089). (Contributed by NM, 15-Mar-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐾 ∈ Fre ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑃 ∈ 𝑌 ∧ 𝐴 ⊆ (◡𝐹 “ {𝑃}) ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐹:𝑋⟶{𝑃}) | ||
Theorem | ordtt1 23408 | The order topology is T1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑅 ∈ PosetRel → (ordTop‘𝑅) ∈ Fre) | ||
Theorem | lmmo 23409 | A sequence in a Hausdorff space converges to at most one limit. Part of Lemma 1.4-2(a) of [Kreyszig] p. 26. (Contributed by NM, 31-Jan-2008.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | lmfun 23410 | The convergence relation is function-like in a Hausdorff space. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | ||
Theorem | dishaus 23411 | A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007.) (Proof shortened by Mario Carneiro, 8-Apr-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus) | ||
Theorem | ordthauslem 23412* | Lemma for ordthaus 23413. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = dom 𝑅 ⇒ ⊢ ((𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → (𝐴 ≠ 𝐵 → ∃𝑚 ∈ (ordTop‘𝑅)∃𝑛 ∈ (ordTop‘𝑅)(𝐴 ∈ 𝑚 ∧ 𝐵 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | ||
Theorem | ordthaus 23413 | The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ (𝑅 ∈ TosetRel → (ordTop‘𝑅) ∈ Haus) | ||
Theorem | xrhaus 23414 | The topology of the extended reals is Hausdorff. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
⊢ (ordTop‘ ≤ ) ∈ Haus | ||
Syntax | ccmp 23415 | Extend class notation with the class of all compact spaces. |
class Comp | ||
Definition | df-cmp 23416* | Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of [BourbakiTop1] p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008.) |
⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | ||
Theorem | iscmp 23417* | The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
Theorem | cmpcov 23418* | An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑆 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑆) → ∃𝑠 ∈ (𝒫 𝑆 ∩ Fin)𝑋 = ∪ 𝑠) | ||
Theorem | cmpcov2 23419* | Rewrite cmpcov 23418 for the cover {𝑦 ∈ 𝐽 ∣ 𝜑}. (Contributed by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∀𝑦 ∈ 𝑠 𝜑)) | ||
Theorem | cmpcovf 23420* | Combine cmpcov 23418 with ac6sfi 9348 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝑧 = (𝑓‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐽 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑧 ∈ 𝐴 𝜑)) → ∃𝑠 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = ∪ 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶𝐴 ∧ ∀𝑦 ∈ 𝑠 𝜓))) | ||
Theorem | cncmp 23421 | Compactness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Comp) | ||
Theorem | fincmp 23422 | A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) | ||
Theorem | 0cmp 23423 | The singleton of the empty set is compact. (Contributed by FL, 2-Aug-2009.) |
⊢ {∅} ∈ Comp | ||
Theorem | cmptop 23424 | A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | ||
Theorem | rncmp 23425 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | ||
Theorem | imacmp 23426 | The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐽 ↾t 𝐴) ∈ Comp) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Comp) | ||
Theorem | discmp 23427 | A discrete topology is compact iff the base set is finite. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp) | ||
Theorem | cmpsublem 23428* | Lemma for cmpsub 23429. (Contributed by Jeff Hankins, 28-Jun-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽 ↾t 𝑆)(∪ (𝐽 ↾t 𝑆) = ∪ 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin)∪ (𝐽 ↾t 𝑆) = ∪ 𝑡))) | ||
Theorem | cmpsub 23429* | Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 ⊆ ∪ 𝑑))) | ||
Theorem | tgcmp 23430* | A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 24074, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵) → ((topGen‘𝐵) ∈ Comp ↔ ∀𝑦 ∈ 𝒫 𝐵(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) | ||
Theorem | cmpcld 23431 | A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.) |
⊢ ((𝐽 ∈ Comp ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝑆) ∈ Comp) | ||
Theorem | uncmp 23432 | The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 = (𝑆 ∪ 𝑇)) ∧ ((𝐽 ↾t 𝑆) ∈ Comp ∧ (𝐽 ↾t 𝑇) ∈ Comp)) → 𝐽 ∈ Comp) | ||
Theorem | fiuncmp 23433* | A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝐽 ↾t 𝐵) ∈ Comp) → (𝐽 ↾t ∪ 𝑥 ∈ 𝐴 𝐵) ∈ Comp) | ||
Theorem | sscmp 23434 | A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Comp ∧ 𝐽 ⊆ 𝐾) → 𝐽 ∈ Comp) | ||
Theorem | hauscmplem 23435* | Lemma for hauscmp 23436. (Contributed by Mario Carneiro, 27-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) & ⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) | ||
Theorem | hauscmp 23436 | A compact subspace of a T2 space is closed. (Contributed by Jeff Hankins, 16-Jan-2010.) (Proof shortened by Mario Carneiro, 14-Dec-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | cmpfi 23437* | If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | ||
Theorem | cmpfii 23438 | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) | ||
Theorem | bwth 23439* | The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝐴)) | ||
Syntax | cconn 23440 | Extend class notation with the class of all connected topologies. |
class Conn | ||
Definition | df-conn 23441 | Topologies are connected when only ∅ and ∪ 𝑗 are both open and closed. (Contributed by FL, 17-Nov-2008.) |
⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪ 𝑗}} | ||
Theorem | isconn 23442 | The predicate 𝐽 is a connected topology . (Contributed by FL, 17-Nov-2008.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋})) | ||
Theorem | isconn2 23443 | The predicate 𝐽 is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Conn ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) ⊆ {∅, 𝑋})) | ||
Theorem | connclo 23444 | The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 = 𝑋) | ||
Theorem | conndisj 23445 | If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≠ 𝑋) | ||
Theorem | conntop 23446 | A connected topology is a topology. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 14-Dec-2013.) |
⊢ (𝐽 ∈ Conn → 𝐽 ∈ Top) | ||
Theorem | indisconn 23447 | The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ {∅, 𝐴} ∈ Conn | ||
Theorem | dfconn2 23448* | An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ 𝑋))) | ||
Theorem | connsuba 23449* | Connectedness for a subspace. See connsub 23450. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐽 ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝐴) ≠ ∅ ∧ (𝑦 ∩ 𝐴) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝐴) ≠ 𝐴))) | ||
Theorem | connsub 23450* | Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) | ||
Theorem | cnconn 23451 | Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn) | ||
Theorem | nconnsubb 23452 | Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑈 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → (𝑉 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → ((𝑈 ∩ 𝑉) ∩ 𝐴) = ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑈 ∪ 𝑉)) ⇒ ⊢ (𝜑 → ¬ (𝐽 ↾t 𝐴) ∈ Conn) | ||
Theorem | connsubclo 23453 | If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) & ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | connima 23454 | The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) | ||
Theorem | conncn 23455 | A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Conn) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑈 ∈ 𝐾) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) | ||
Theorem | iunconnlem 23456* | Lemma for iunconn 23457. (Contributed by Mario Carneiro, 11-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑉 ∈ 𝐽) & ⊢ (𝜑 → (𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵) ≠ ∅) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) & ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑈 ∪ 𝑉)) & ⊢ Ⅎ𝑘𝜑 ⇒ ⊢ (𝜑 → ¬ 𝑃 ∈ 𝑈) | ||
Theorem | iunconn 23457* | The indexed union of connected overlapping subspaces sharing a common point is connected. (Contributed by Mario Carneiro, 11-Jun-2014.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn) ⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) | ||
Theorem | unconn 23458 | The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) | ||
Theorem | clsconn 23459 | The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) | ||
Theorem | conncompid 23460* | The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) | ||
Theorem | conncompconn 23461* | The connected component containing 𝐴 is connected. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t 𝑆) ∈ Conn) | ||
Theorem | conncompss 23462* | The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) | ||
Theorem | conncompcld 23463* | The connected component containing 𝐴 is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | conncompclo 23464* | The connected component containing 𝐴 is a subset of any clopen set containing 𝐴. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑇) | ||
Theorem | t1connperf 23465 | A connected T1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o) → 𝐽 ∈ Perf) | ||
Syntax | c1stc 23466 | Extend class definition to include the class of all first-countable topologies. |
class 1stω | ||
Syntax | c2ndc 23467 | Extend class definition to include the class of all second-countable topologies. |
class 2ndω | ||
Definition | df-1stc 23468* | Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} | ||
Definition | df-2ndc 23469* | Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010.) |
⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | ||
Theorem | is1stc 23470* | The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) | ||
Theorem | is1stc2 23471* | An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | ||
Theorem | 1stctop 23472 | A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) | ||
Theorem | 1stcclb 23473* | A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
Theorem | 1stcfb 23474* | For any point 𝐴 in a first-countable topology, there is a function 𝑓:ℕ⟶𝐽 enumerating neighborhoods of 𝐴 which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋) → ∃𝑓(𝑓:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ (𝐴 ∈ (𝑓‘𝑘) ∧ (𝑓‘(𝑘 + 1)) ⊆ (𝑓‘𝑘)) ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑘 ∈ ℕ (𝑓‘𝑘) ⊆ 𝑦))) | ||
Theorem | is2ndc 23475* | The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | ||
Theorem | 2ndctop 23476 | A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ Top) | ||
Theorem | 2ndci 23477 | A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2ndω) | ||
Theorem | 2ndcsb 23478* | Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥(𝑥 ≼ ω ∧ (topGen‘(fi‘𝑥)) = 𝐽)) | ||
Theorem | 2ndcredom 23479 | A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) | ||
Theorem | 2ndc1stc 23480 | A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) |
⊢ (𝐽 ∈ 2ndω → 𝐽 ∈ 1stω) | ||
Theorem | 1stcrestlem 23481* | Lemma for 1stcrest 23482. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝐵 ≼ ω → ran (𝑥 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | 1stcrest 23482 | A subspace of a first-countable space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 1stω) | ||
Theorem | 2ndcrest 23483 | A subspace of a second-countable space is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ 2ndω) | ||
Theorem | 2ndcctbss 23484* | If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝐽 = (topGen‘𝐵) & ⊢ 𝑆 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃𝑤 ∈ 𝐵 (𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣))} ⇒ ⊢ ((𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω) → ∃𝑏 ∈ TopBases (𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = (topGen‘𝑏))) | ||
Theorem | 2ndcdisj 23485* | Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ ((𝐽 ∈ 2ndω ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝐽 ∖ {∅}) ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝐴 ≼ ω) | ||
Theorem | 2ndcdisj2 23486* | Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.) |
⊢ ((𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝑥) → 𝐴 ≼ ω) | ||
Theorem | 2ndcomap 23487* | A surjective continuous open map maps second-countable spaces to second-countable spaces. (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐽 ∈ 2ndω) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ran 𝐹 = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ 2ndω) | ||
Theorem | 2ndcsep 23488* | A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) | ||
Theorem | dis2ndc 23489 | A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015.) |
⊢ (𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω) | ||
Theorem | 1stcelcls 23490* | A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10504. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑃))) | ||
Theorem | 1stccnp 23491* | A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10504, but only via 1stcelcls 23490, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑃) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑃))))) | ||
Theorem | 1stccn 23492* | A mapping 𝑋⟶𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ 1stω) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) | ||
Syntax | clly 23493 | Extend class notation with the "locally 𝐴 " predicate of a topological space. |
class Locally 𝐴 | ||
Syntax | cnlly 23494 | Extend class notation with the "N-locally 𝐴 " predicate of a topological space. |
class 𝑛-Locally 𝐴 | ||
Definition | df-lly 23495* | Define a space that is locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is locally 𝐴 if every neighborhood of a point contains an open subneighborhood that is 𝐴 in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | ||
Definition | df-nlly 23496* |
Define a space that is n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | ||
Theorem | islly 23497* | The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | ||
Theorem | isnlly 23498* | The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
Theorem | llyeq 23499 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) | ||
Theorem | nllyeq 23500 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |