Home | Metamath
Proof Explorer Theorem List (p. 235 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ustuqtop0 23401* | Lemma for ustuqtop 23407. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) | ||
Theorem | ustuqtop1 23402* | Lemma for ustuqtop 23407, similar to ssnei2 22276. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) | ||
Theorem | ustuqtop2 23403* | Lemma for ustuqtop 23407. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) | ||
Theorem | ustuqtop3 23404* | Lemma for ustuqtop 23407, similar to elnei 22271. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) | ||
Theorem | ustuqtop4 23405* | Lemma for ustuqtop 23407. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) | ||
Theorem | ustuqtop5 23406* | Lemma for ustuqtop 23407. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) | ||
Theorem | ustuqtop 23407* | For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) | ||
Theorem | utopsnneiplem 23408* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) & ⊢ 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
Theorem | utopsnneip 23409* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
Theorem | utopsnnei 23410 | Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) | ||
Theorem | utop2nei 23411 | For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉 ∈ 𝑈 ∧ ◡𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀 ∘ 𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀)) | ||
Theorem | utop3cls 23412 | Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉 ∈ 𝑈 ∧ ◡𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀 ∘ 𝑉))) | ||
Theorem | utopreg 23413 | All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) | ||
Syntax | cuss 23414 | Extend class notation with the Uniform Structure extractor function. |
class UnifSt | ||
Syntax | cusp 23415 | Extend class notation with the class of uniform spaces. |
class UnifSp | ||
Syntax | ctus 23416 | Extend class notation with the function mapping a uniform structure to a uniform space. |
class toUnifSp | ||
Definition | df-uss 23417 | Define the uniform structure extractor function. Similarly with df-topn 17143 this differs from df-unif 16994 when a structure has been restricted using df-ress 16951; in this case the UnifSet component will still have a uniform set over the larger set, and this function fixes this by restricting the uniform set as well. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓)))) | ||
Definition | df-usp 23418 | Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))} | ||
Definition | df-tus 23419 | Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | ||
Theorem | ussval 23420 | The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6775 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSet‘𝑊) ⇒ ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) | ||
Theorem | ussid 23421 | In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSet‘𝑊) ⇒ ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) | ||
Theorem | isusp 23422 | The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))) | ||
Theorem | ressuss 23423 | Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) | ||
Theorem | ressust 23424 | The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝑇 = (UnifSt‘(𝑊 ↾s 𝐴)) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) | ||
Theorem | ressusp 23425 | The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽) → (𝑊 ↾s 𝐴) ∈ UnifSp) | ||
Theorem | tusval 23426 | The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) | ||
Theorem | tuslem 23427 | Lemma for tusbas 23429, tusunif 23430, and tustopn 23432. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾))) | ||
Theorem | tuslemOLD 23428 | Obsolete proof of tuslem 23427 as of 28-Oct-2024. Lemma for tusbas 23429, tusunif 23430, and tustopn 23432. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾))) | ||
Theorem | tusbas 23429 | The base set of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾)) | ||
Theorem | tusunif 23430 | The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾)) | ||
Theorem | tususs 23431 | The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSt‘𝐾)) | ||
Theorem | tustopn 23432 | The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ 𝐾 = (toUnifSp‘𝑈) & ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 = (TopOpen‘𝐾)) | ||
Theorem | tususp 23433 | A constructed uniform space is an uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ UnifSp) | ||
Theorem | tustps 23434 | A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
⊢ 𝐾 = (toUnifSp‘𝑈) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 ∈ TopSp) | ||
Theorem | uspreg 23435 | If a uniform space is Hausdorff, it is regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) | ||
Syntax | cucn 23436 | Extend class notation with the uniform continuity operation. |
class Cnu | ||
Definition | df-ucn 23437* | Define a function on two uniform structures which value is the set of uniformly continuous functions from the first uniform structure to the second. A function 𝑓 is uniformly continuous if, roughly speaking, it is possible to guarantee that (𝑓‘𝑥) and (𝑓‘𝑦) be as close to each other as we please by requiring only that 𝑥 and 𝑦 are sufficiently close to each other; unlike ordinary continuity, the maximum distance between (𝑓‘𝑥) and (𝑓‘𝑦) cannot depend on 𝑥 and 𝑦 themselves. This formulation is the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ Cnu = (𝑢 ∈ ∪ ran UnifOn, 𝑣 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (dom ∪ 𝑣 ↑m dom ∪ 𝑢) ∣ ∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪ 𝑢∀𝑦 ∈ dom ∪ 𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | ||
Theorem | ucnval 23438* | The set of all uniformly continuous function from uniform space 𝑈 to uniform space 𝑉. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | ||
Theorem | isucn 23439* | The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉". (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | ||
Theorem | isucn2 23440* | The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉", expressed with filter bases for the entourages. (Contributed by Thierry Arnoux, 26-Jan-2018.) |
⊢ 𝑈 = ((𝑋 × 𝑋)filGen𝑅) & ⊢ 𝑉 = ((𝑌 × 𝑌)filGen𝑆) & ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ (fBas‘(𝑋 × 𝑋))) & ⊢ (𝜑 → 𝑆 ∈ (fBas‘(𝑌 × 𝑌))) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑆 ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) | ||
Theorem | ucnimalem 23441* | Reformulate the 𝐺 function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ 〈(𝐹‘(1st ‘𝑝)), (𝐹‘(2nd ‘𝑝))〉) | ||
Theorem | ucnima 23442* | An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝑈 (𝐺 “ 𝑟) ⊆ 𝑊) | ||
Theorem | ucnprima 23443* | The preimage by a uniformly continuous function 𝐹 of an entourage 𝑊 of 𝑌 is an entourage of 𝑋. Note of the definition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) ⇒ ⊢ (𝜑 → (◡𝐺 “ 𝑊) ∈ 𝑈) | ||
Theorem | iducn 23444 | The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈)) | ||
Theorem | cstucnd 23445 | A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉)) | ||
Theorem | ucncn 23446 | Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐾 = (TopOpen‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ UnifSp) & ⊢ (𝜑 → 𝑆 ∈ UnifSp) & ⊢ (𝜑 → 𝑅 ∈ TopSp) & ⊢ (𝜑 → 𝑆 ∈ TopSp) & ⊢ (𝜑 → 𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Syntax | ccfilu 23447 | Extend class notation with the set of Cauchy filter bases. |
class CauFilu | ||
Definition | df-cfilu 23448* | Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage 𝑣, there is an element 𝑎 of the filter "small enough in 𝑣 " i.e. such that every pair {𝑥, 𝑦} of points in 𝑎 is related by 𝑣". Definition 2 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
⊢ CauFilu = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (fBas‘dom ∪ 𝑢) ∣ ∀𝑣 ∈ 𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) | ||
Theorem | iscfilu 23449* | The predicate "𝐹 is a Cauchy filter base on uniform space 𝑈". (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) | ||
Theorem | cfilufbas 23450 | A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) | ||
Theorem | cfiluexsm 23451* | For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) | ||
Theorem | fmucndlem 23452* | Lemma for fmucnd 23453. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ⊆ 𝑋) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) “ (𝐴 × 𝐴)) = ((𝐹 “ 𝐴) × (𝐹 “ 𝐴))) | ||
Theorem | fmucnd 23453* | The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝐶 ∈ (CauFilu‘𝑈)) & ⊢ 𝐷 = ran (𝑎 ∈ 𝐶 ↦ (𝐹 “ 𝑎)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (CauFilu‘𝑉)) | ||
Theorem | cfilufg 23454 | The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu‘𝑈)) | ||
Theorem | trcfilu 23455 | Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu‘𝑈) ∧ ¬ ∅ ∈ (𝐹 ↾t 𝐴)) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾t 𝐴) ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
Theorem | cfiluweak 23456 | A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu‘𝑈)) | ||
Theorem | neipcfilu 23457 | In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu‘𝑈)) | ||
Syntax | ccusp 23458 | Extend class notation with the class of all complete uniform spaces. |
class CUnifSp | ||
Definition | df-cusp 23459* | Define the class of all complete uniform spaces. Definition 3 of [BourbakiTop1] p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | ||
Theorem | iscusp 23460* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | ||
Theorem | cuspusp 23461 | A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) | ||
Theorem | cuspcvg 23462 | In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅) | ||
Theorem | iscusp2 23463* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) | ||
Theorem | cnextucn 23464* | Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑌) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘𝑈)) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ucnextcn 23465 | Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑆 = (UnifSt‘𝑉) & ⊢ 𝑇 = (UnifSt‘(𝑉 ↾s 𝐴)) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑉 ∈ UnifSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (𝑇 Cnu𝑈)) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ispsmet 23466* | Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
Theorem | psmetdmdm 23467 | Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | psmetf 23468 | The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
Theorem | psmetcl 23469 | Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | psmet0 23470 | The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
Theorem | psmettri2 23471 | Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | psmetsym 23472 | The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
Theorem | psmettri 23473 | Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
Theorem | psmetge0 23474 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
Theorem | psmetxrge0 23475 | The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) | ||
Theorem | psmetres2 23476 | Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) | ||
Theorem | psmetlecl 23477 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | distspace 23478 | A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.) |
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴)))) | ||
Syntax | cxms 23479 | Extend class notation with the class of extended metric spaces. |
class ∞MetSp | ||
Syntax | cms 23480 | Extend class notation with the class of metric spaces. |
class MetSp | ||
Syntax | ctms 23481 | Extend class notation with the function mapping a metric to the metric space it defines. |
class toMetSp | ||
Definition | df-xms 23482 | Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | ||
Definition | df-ms 23483 | Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.) |
⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | ||
Definition | df-tms 23484 | Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ toMetSp = (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) | ||
Theorem | ismet 23485* | Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | ||
Theorem | isxmet 23486* | Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
Theorem | ismeti 23487* | Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑋 ∈ V & ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
Theorem | isxmetd 23488* | Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | isxmet2d 23489* | It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | metflem 23490* | Lemma for metf 23492 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | ||
Theorem | xmetf 23491 | Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
Theorem | metf 23492 | Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
Theorem | xmetcl 23493 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
Theorem | metcl 23494 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
Theorem | ismet2 23495 | An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | ||
Theorem | metxmet 23496 | A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | ||
Theorem | xmetdmdm 23497 | Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | metdmdm 23498 | Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
Theorem | xmetunirn 23499 | Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | ||
Theorem | xmeteq0 23500 | The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |