![]() |
Metamath
Proof Explorer Theorem List (p. 235 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43661) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nmsq 23401 | The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝑁‘𝐴)↑2) = (𝐴 , 𝐴)) | ||
Theorem | cphnmf 23402 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁:𝑉⟶𝐾) | ||
Theorem | cphnmcl 23403 | The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ 𝐾) | ||
Theorem | reipcl 23404 | An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐴) ∈ ℝ) | ||
Theorem | ipge0 23405 | The inner product in a subcomplex pre-Hilbert space is positive definite. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝐴 , 𝐴)) | ||
Theorem | cphipcj 23406 | Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj 20377. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∗‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
Theorem | cphipipcj 23407 | An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (Revised by AV, 19-Oct-2021.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) · (𝐵 , 𝐴)) = ((abs‘(𝐴 , 𝐵))↑2)) | ||
Theorem | cphorthcom 23408 | Orthogonality (meaning inner product is 0) is commutative. Complex version of iporthcom 20378. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 0 ↔ (𝐵 , 𝐴) = 0)) | ||
Theorem | cphip0l 23409 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. Complex version of ip0l 20379. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 0) | ||
Theorem | cphip0r 23410 | Inner product with a zero second argument. Complex version of ip0r 20380. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 0) | ||
Theorem | cphipeq0 23411 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. Complex version of ipeq0 20381. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 0 ↔ 𝐴 = 0 )) | ||
Theorem | cphdir 23412 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. Complex version of ipdir 20382. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) + (𝐵 , 𝐶))) | ||
Theorem | cphdi 23413 | Distributive law for inner product (left-distributivity). Complex version of ipdi 20383. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) + (𝐴 , 𝐶))) | ||
Theorem | cph2di 23414 | Distributive law for inner product. Complex version of ip2di 20384. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) + ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | cphsubdir 23415 | Distributive law for inner product subtraction. Complex version of ipsubdir 20385. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶) − (𝐵 , 𝐶))) | ||
Theorem | cphsubdi 23416 | Distributive law for inner product subtraction. Complex version of ipsubdi 20386. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵) − (𝐴 , 𝐶))) | ||
Theorem | cph2subdi 23417 | Distributive law for inner product subtraction. Complex version of ip2subdi 20387. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷)) − ((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | cphass 23418 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. See ipass 20388, his5 28515. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 · (𝐵 , 𝐶))) | ||
Theorem | cphassr 23419 | "Associative" law for second argument of inner product (compare cphass 23418). See ipassr 20389, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶))) | ||
Theorem | cph2ass 23420 | Move scalar multiplication to outside of inner product. See his35 28517. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷))) | ||
Theorem | cphassi 23421 | Associative law for the first argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴))) | ||
Theorem | cphassir 23422 | "Associative" law for the second argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , (i · 𝐵)) = (-i · (𝐴 , 𝐵))) | ||
Theorem | tcphex 23423* | Lemma for tcphbas 23425 and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥))) ∈ V | ||
Theorem | tcphval 23424* | Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ 𝐺 = (𝑊 toNrmGrp (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | tcphbas 23425 | The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ 𝑉 = (Base‘𝐺) | ||
Theorem | tchplusg 23426 | The addition operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ + = (+g‘𝐺) | ||
Theorem | tcphsub 23427 | The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ − = (-g‘𝑊) ⇒ ⊢ − = (-g‘𝐺) | ||
Theorem | tcphmulr 23428 | The ring operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = (.r‘𝑊) ⇒ ⊢ · = (.r‘𝐺) | ||
Theorem | tcphsca 23429 | The scalar field of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ 𝐹 = (Scalar‘𝐺) | ||
Theorem | tcphvsca 23430 | The scalar multiplication of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ · = ( ·𝑠 ‘𝐺) | ||
Theorem | tcphip 23431 | The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ · = (·𝑖‘𝑊) ⇒ ⊢ · = (·𝑖‘𝐺) | ||
Theorem | tcphtopn 23432 | The topology of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝑊 ∈ 𝑉 → 𝐽 = (MetOpen‘𝐷)) | ||
Theorem | tcphphl 23433 | Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil) | ||
Theorem | tchnmfval 23434* | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → 𝑁 = (𝑥 ∈ 𝑉 ↦ (√‘(𝑥 , 𝑥)))) | ||
Theorem | tcphnmval 23435 | The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑁‘𝑋) = (√‘(𝑋 , 𝑋))) | ||
Theorem | cphtcphnm 23436 | The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘𝐺)) | ||
Theorem | tcphds 23437 | The distance of a pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ − = (-g‘𝑊) ⇒ ⊢ (𝑊 ∈ Grp → (𝑁 ∘ − ) = (dist‘𝐺)) | ||
Theorem | phclm 23438 | A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) ⇒ ⊢ (𝜑 → 𝑊 ∈ ℂMod) | ||
Theorem | tcphcphlem3 23439 | Lemma for tcphcph 23443: real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝑋 , 𝑋) ∈ ℝ) | ||
Theorem | ipcau2 23440* | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐶 = ((𝑌 , 𝑋) / (𝑌 , 𝑌)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | tcphcphlem1 23441* | Lemma for tcphcph 23443: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 − 𝑌) , (𝑋 − 𝑌))) ≤ ((√‘(𝑋 , 𝑋)) + (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcphlem2 23442* | Lemma for tcphcph 23443: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) | ||
Theorem | tcphcph 23443* | The standard definition of a norm turns any pre-Hilbert space over a subfield of ℂfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝐺 = (toℂPreHil‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) & ⊢ , = (·𝑖‘𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ ℂPreHil) | ||
Theorem | ipcau 23444 | The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 11-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘(𝑋 , 𝑌)) ≤ ((𝑁‘𝑋) · (𝑁‘𝑌))) | ||
Theorem | nmparlem 23445 | Lemma for nmpar 23446. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | nmpar 23446 | A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝑁‘(𝐴 + 𝐵))↑2) + ((𝑁‘(𝐴 − 𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | cphipval2 23447 | Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2)))) / 4)) | ||
Theorem | 4cphipval2 23448 | Four times the inner product value cphipval2 23447. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (4 · (𝐴 , 𝐵)) = ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴 − 𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴 − (i · 𝐵)))↑2))))) | ||
Theorem | cphipval 23449* | Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.) |
⊢ 𝑋 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4)) | ||
Theorem | ipcnlem2 23450 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝐴𝐷𝑋) < 𝑈) & ⊢ (𝜑 → (𝐵𝐷𝑌) < 𝑇) ⇒ ⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅) | ||
Theorem | ipcnlem1 23451* | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐷 = (dist‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) & ⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) | ||
Theorem | ipcn 23452 | The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ , = (·if‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑊 ∈ ℂPreHil → , ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | cnmpt1ip 23453* | Continuity of inner product; analogue of cnmpt12f 21878 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐶 = (TopOpen‘ℂfld) & ⊢ , = (·𝑖‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 , 𝐵)) ∈ (𝐾 Cn 𝐶)) | ||
Theorem | cnmpt2ip 23454* | Continuity of inner product; analogue of cnmpt22f 21887 which cannot be used directly because ·𝑖 is not a function. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐶 = (TopOpen‘ℂfld) & ⊢ , = (·𝑖‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂPreHil) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 , 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐶)) | ||
Theorem | csscld 23455 | A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | clsocv 23456 | The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂‘𝑆)) | ||
Theorem | cphsscph 23457 | A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008.) (Revised by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) | ||
Syntax | ccfil 23458 | Extend class notation with the class of Cauchy filters. |
class CauFil | ||
Syntax | ccau 23459 | Extend class notation with the class of Cauchy sequences. |
class Cau | ||
Syntax | ccmet 23460 | Extend class notation with the class of complete metrics. |
class CMet | ||
Definition | df-cfil 23461* | Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < 𝑥 there is an element of the filter whose metric diameter is less than 𝑥. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | ||
Definition | df-cau 23462* | Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006.) |
⊢ Cau = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) | ||
Definition | df-cmet 23463* | Define the set of complete metrics on a given set. (Contributed by Mario Carneiro, 1-May-2014.) |
⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) | ||
Theorem | lmmbr 23464* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21441. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) | ||
Theorem | lmmbr2 23465* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21441. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) | ||
Theorem | lmmbr3 23466* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) | ||
Theorem | lmmcvg 23467* | Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)) | ||
Theorem | lmmbrf 23468* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 23465 presupposes that 𝐹 is a function. (Contributed by NM, 20-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥))) | ||
Theorem | lmnn 23469* | A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑃) < (1 / 𝑘)) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | ||
Theorem | cfilfval 23470* | The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (CauFil‘𝐷) = {𝑓 ∈ (Fil‘𝑋) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | ||
Theorem | iscfil 23471* | The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | ||
Theorem | iscfil2 23472* | The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥))) | ||
Theorem | cfilfil 23473 | A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | cfili 23474* | Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅) | ||
Theorem | cfil3i 23475* | A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹) | ||
Theorem | cfilss 23476 | A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) | ||
Theorem | fgcfil 23477* | The Cauchy filter condition for a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 (𝑧𝐷𝑤) < 𝑥)) | ||
Theorem | fmcfil 23478* | The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑦 ∀𝑤 ∈ 𝑦 ((𝐹‘𝑧)𝐷(𝐹‘𝑤)) < 𝑥)) | ||
Theorem | iscfil3 23479* | A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))) | ||
Theorem | cfilfcls 23480 | Similar to ultrafilters (uffclsflim 22243), the cluster points and limit points of a Cauchy filter coincide. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑋 = dom dom 𝐷 ⇒ ⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) | ||
Theorem | caufval 23481* | The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋 ↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝑓‘𝑘)(ball‘𝐷)𝑥)}) | ||
Theorem | iscau 23482* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷". Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21441. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑘 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶((𝐹‘𝑘)(ball‘𝐷)𝑥)))) | ||
Theorem | iscau2 23483* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑥)))) | ||
Theorem | iscau3 23484* | Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑚 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑥)))) | ||
Theorem | iscau4 23485* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))) | ||
Theorem | iscauf 23486* | Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = 𝐵) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵𝐷𝐴) < 𝑥)) | ||
Theorem | caun0 23487 | A metric with a Cauchy sequence cannot be empty. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝑋 ≠ ∅) | ||
Theorem | caufpm 23488 | Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | ||
Theorem | caucfil 23489 | A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐿 = ((𝑋 FilMap 𝐹)‘(ℤ≥ “ 𝑍)) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐿 ∈ (CauFil‘𝐷))) | ||
Theorem | iscmet 23490* | The property "𝐷 is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑓 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑓) ≠ ∅)) | ||
Theorem | cmetcvg 23491 | The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐹) ≠ ∅) | ||
Theorem | cmetmet 23492 | A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 29-Jan-2014.) |
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | cmetmeti 23493 | A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007.) |
⊢ 𝐷 ∈ (CMet‘𝑋) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
Theorem | cmetcaulem 23494* | Lemma for cmetcau 23495. (Contributed by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | cmetcau 23495 | The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | iscmet3lem3 23496* | Lemma for iscmet3 23499. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑅) | ||
Theorem | iscmet3lem1 23497* | Lemma for iscmet3 23499. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
Theorem | iscmet3lem2 23498* | Lemma for iscmet3 23499. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) & ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) & ⊢ (𝜑 → 𝐺 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝑆:ℤ⟶𝐺) & ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 fLim 𝐺) ≠ ∅) | ||
Theorem | iscmet3 23499* | The property "𝐷 is a complete metric" expressed in terms of functions on ℕ (or any other upper integer set). Thus, we only have to look at functions on ℕ, and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) ⇒ ⊢ (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom (⇝𝑡‘𝐽)))) | ||
Theorem | iscmet2 23500 | A metric 𝐷 is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of [Kreyszig] p. 28. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘𝐽))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |