| Metamath
Proof Explorer Theorem List (p. 235 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cnlly 23401 | Extend class notation with the "N-locally 𝐴 " predicate of a topological space. |
| class 𝑛-Locally 𝐴 | ||
| Definition | df-lly 23402* | Define a space that is locally 𝐴, where 𝐴 is a topological property like "compact", "connected", or "path-connected". A topological space is locally 𝐴 if every neighborhood of a point contains an open subneighborhood that is 𝐴 in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} | ||
| Definition | df-nlly 23403* |
Define a space that is n-locally 𝐴, where 𝐴 is a topological
property like "compact", "connected", or
"path-connected". A
topological space is n-locally 𝐴 if every neighborhood of a point
contains a subneighborhood that is 𝐴 in the subspace topology.
The terminology "n-locally", where 'n' stands for "neighborhood", is not standard, although this is sometimes called "weakly locally 𝐴". The reason for the distinction is that some notions only make sense for arbitrary neighborhoods (such as "locally compact", which is actually 𝑛-Locally Comp in our terminology - open compact sets are not very useful), while others such as "locally connected" are strictly weaker notions if the neighborhoods are not required to be open. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | ||
| Theorem | islly 23404* | The property of being a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) | ||
| Theorem | isnlly 23405* | The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | llyeq 23406 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → Locally 𝐴 = Locally 𝐵) | ||
| Theorem | nllyeq 23407 | Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) | ||
| Theorem | llytop 23408 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | nllytop 23409 | A locally 𝐴 space is a topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 → 𝐽 ∈ Top) | ||
| Theorem | llyi 23410* | The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑈 ∧ 𝑃 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nllyi 23411* | The property of an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑃})(𝑢 ⊆ 𝑈 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) | ||
| Theorem | nlly2i 23412* | Eliminate the neighborhood symbol from nllyi 23411. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑠 ∈ 𝒫 𝑈∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ (𝐽 ↾t 𝑠) ∈ 𝐴)) | ||
| Theorem | llynlly 23413 | A locally 𝐴 space is n-locally 𝐴: the "n-locally" predicate is the weaker notion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ 𝑛-Locally 𝐴) | ||
| Theorem | llyssnlly 23414 | A locally 𝐴 space is n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝐴 ⊆ 𝑛-Locally 𝐴 | ||
| Theorem | llyss 23415 | The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → Locally 𝐴 ⊆ Locally 𝐵) | ||
| Theorem | nllyss 23416 | The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵) | ||
| Theorem | subislly 23417* | The property of a subspace being locally 𝐴. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝑉) → ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ (𝑥 ∩ 𝐵)∃𝑢 ∈ 𝐽 ((𝑢 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t (𝑢 ∩ 𝐵)) ∈ 𝐴))) | ||
| Theorem | restnlly 23418* | If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) | ||
| Theorem | restlly 23419* | If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ⊆ Top) ⇒ ⊢ (𝜑 → 𝐴 ⊆ Locally 𝐴) | ||
| Theorem | islly2 23420* | An alternative expression for 𝐽 ∈ Locally 𝐴 when 𝐴 passes to open subspaces: A space is locally 𝐴 if every point is contained in an open neighborhood with property 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) | ||
| Theorem | llyrest 23421 | An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) | ||
| Theorem | nllyrest 23422 | An open subspace of an n-locally 𝐴 space is also n-locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ 𝑛-Locally 𝐴) | ||
| Theorem | loclly 23423 | If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) | ||
| Theorem | llyidm 23424 | Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Locally 𝐴 = Locally 𝐴 | ||
| Theorem | nllyidm 23425 | Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 23423 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 | ||
| Theorem | toplly 23426 | A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ Locally Top = Top | ||
| Theorem | topnlly 23427 | A topology is n-locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝑛-Locally Top = Top | ||
| Theorem | hauslly 23428 | A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus) | ||
| Theorem | hausnlly 23429 | A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally Haus ↔ 𝐽 ∈ Locally Haus) | ||
| Theorem | hausllycmp 23430 | A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp) | ||
| Theorem | cldllycmp 23431 | A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 23422.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp) | ||
| Theorem | lly1stc 23432 | First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Locally 1stω = 1stω | ||
| Theorem | dislly 23433* | The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) | ||
| Theorem | disllycmp 23434 | A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp) | ||
| Theorem | dis1stc 23435 | A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1stω) | ||
| Theorem | hausmapdom 23436 | If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 23924 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑m ℕ)) | ||
| Theorem | hauspwdom 23437 | Simplify the cardinal 𝐴↑ℕ of hausmapdom 23436 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵) | ||
| Syntax | cref 23438 | Extend class definition to include the refinement relation. |
| class Ref | ||
| Syntax | cptfin 23439 | Extend class definition to include the class of point-finite covers. |
| class PtFin | ||
| Syntax | clocfin 23440 | Extend class definition to include the class of locally finite covers. |
| class LocFin | ||
| Definition | df-ref 23441* | Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | ||
| Definition | df-ptfin 23442* | Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} | ||
| Definition | df-locfin 23443* | Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) | ||
| Theorem | refrel 23444 | Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ Rel Ref | ||
| Theorem | isref 23445* | The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 36303. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) | ||
| Theorem | refbas 23446 | A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) | ||
| Theorem | refssex 23447* | Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) | ||
| Theorem | ssref 23448 | A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) | ||
| Theorem | refref 23449 | Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) | ||
| Theorem | reftr 23450 | Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴Ref𝐶) | ||
| Theorem | refun0 23451 | Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) | ||
| Theorem | isptfin 23452* | The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | ||
| Theorem | islocfin 23453* | The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) | ||
| Theorem | finptfin 23454 | A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) | ||
| Theorem | ptfinfin 23455* | A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) | ||
| Theorem | finlocfin 23456 | A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) | ||
| Theorem | locfintop 23457 | A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) | ||
| Theorem | locfinbas 23458 | A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) | ||
| Theorem | locfinnei 23459* | A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) | ||
| Theorem | lfinpfin 23460 | A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) | ||
| Theorem | lfinun 23461 | Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽) → (𝐴 ∪ 𝐵) ∈ (LocFin‘𝐽)) | ||
| Theorem | locfincmp 23462 | For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) | ||
| Theorem | unisngl 23463* | Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ 𝑋 = ∪ 𝐶 | ||
| Theorem | dissnref 23464* | The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋) → 𝐶Ref𝑌) | ||
| Theorem | dissnlocfin 23465* | The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
| ⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐶 ∈ (LocFin‘𝒫 𝑋)) | ||
| Theorem | locfindis 23466 | The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌)) | ||
| Theorem | locfincf 23467 | A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾)) | ||
| Theorem | comppfsc 23468* | A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) | ||
| Syntax | ckgen 23469 | Extend class notation with the compact generator operation. |
| class 𝑘Gen | ||
| Definition | df-kgen 23470* | Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. 𝑥 ∈ (𝑘Gen‘𝑗), iff the preimage of 𝑥 is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | ||
| Theorem | kgenval 23471* | Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) | ||
| Theorem | elkgen 23472* | Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | ||
| Theorem | kgeni 23473 | Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐴 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | ||
| Theorem | kgentopon 23474 | The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋)) | ||
| Theorem | kgenuni 23475 | The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 = ∪ (𝑘Gen‘𝐽)) | ||
| Theorem | kgenftop 23476 | The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | ||
| Theorem | kgenf 23477 | The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑘Gen:Top⟶Top | ||
| Theorem | kgentop 23478 | A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | ||
| Theorem | kgenss 23479 | The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | ||
| Theorem | kgenhaus 23480 | The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus) | ||
| Theorem | kgencmp 23481 | The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) | ||
| Theorem | kgencmp2 23482 | The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ Top → ((𝐽 ↾t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)) | ||
| Theorem | kgenidm 23483 | The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | ||
| Theorem | iskgen2 23484 | A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) | ||
| Theorem | iskgen3 23485* | Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | ||
| Theorem | llycmpkgen2 23486* | A locally compact space is compactly generated. (This variant of llycmpkgen 23488 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) ⇒ ⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | cmpkgen 23487 | A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | llycmpkgen 23488 | A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | 1stckgenlem 23489 | The one-point compactification of ℕ is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp) | ||
| Theorem | 1stckgen 23490 | A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen) | ||
| Theorem | kgen2ss 23491 | The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾)) | ||
| Theorem | kgencn 23492* | A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) | ||
| Theorem | kgencn2 23493* | A function 𝐹:𝐽⟶𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧⟶𝐽, the composite 𝐹 ∘ 𝑔:𝑧⟶𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) | ||
| Theorem | kgencn3 23494 | The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾))) | ||
| Theorem | kgen2cn 23495 | A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | ||
| Syntax | ctx 23496 | Extend class notation with the binary topological product operation. |
| class ×t | ||
| Syntax | cxko 23497 | Extend class notation with a function whose value is the compact-open topology. |
| class ↑ko | ||
| Definition | df-tx 23498* | Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) | ||
| Definition | df-xko 23499* | Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ↑ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟 ∣ (𝑟 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | ||
| Theorem | txval 23500* | Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |