Step | Hyp | Ref
| Expression |
1 | | df-fm 23087 |
. . . . 5
⊢ FilMap =
(𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦))))) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)))))) |
3 | | dmeq 5811 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
4 | 3 | fveq2d 6775 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹)) |
5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹)) |
6 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
7 | | imaeq1 5963 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 “ 𝑦) = (𝐹 “ 𝑦)) |
8 | 7 | mpteq2dv 5181 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)) = (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) |
9 | 8 | rneqd 5846 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)) = ran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) |
10 | 6, 9 | oveqan12d 7290 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑓 = 𝐹) → (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦))) = (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) |
11 | 5, 10 | mpteq12dv 5170 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
12 | | fdm 6607 |
. . . . . . . 8
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
13 | 12 | fveq2d 6775 |
. . . . . . 7
⊢ (𝐹:𝑌⟶𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌)) |
14 | 13 | mpteq1d 5174 |
. . . . . 6
⊢ (𝐹:𝑌⟶𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
15 | 14 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
16 | 11, 15 | sylan9eqr 2802 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑥 = 𝑋 ∧ 𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
17 | | elex 3449 |
. . . . 5
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) |
18 | 17 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ V) |
19 | | simp3 1137 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
20 | | elfvdm 6803 |
. . . . . 6
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
21 | 20 | 3ad2ant2 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝑌 ∈ dom fBas) |
22 | 19, 21 | fexd 7100 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ V) |
23 | | fvex 6784 |
. . . . . 6
⊢
(fBas‘𝑌)
∈ V |
24 | 23 | mptex 7096 |
. . . . 5
⊢ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) ∈ V |
25 | 24 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) ∈ V) |
26 | 2, 16, 18, 22, 25 | ovmpod 7419 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
27 | 26 | fveq1d 6773 |
. 2
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))‘𝐵)) |
28 | | mpteq1 5172 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) |
29 | 28 | rneqd 5846 |
. . . . 5
⊢ (𝑏 = 𝐵 → ran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)) = ran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) |
30 | 29 | oveq2d 7287 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
31 | | eqid 2740 |
. . . 4
⊢ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) |
32 | | ovex 7304 |
. . . 4
⊢ (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦))) ∈ V |
33 | 30, 31, 32 | fvmpt 6872 |
. . 3
⊢ (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
34 | 33 | 3ad2ant2 1133 |
. 2
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |
35 | 27, 34 | eqtrd 2780 |
1
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) |