MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Visualization version   GIF version

Theorem fmval 22267
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋   𝑦,𝑌   𝑦,𝐴

Proof of Theorem fmval
Dummy variables 𝑓 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 22262 . . . . 5 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
21a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
3 dmeq 5618 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43fveq2d 6500 . . . . . . 7 (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
54adantl 474 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 imaeq1 5762 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
87mpteq2dv 5019 . . . . . . . 8 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
98rneqd 5648 . . . . . . 7 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
106, 9oveqan12d 6993 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
115, 10mpteq12dv 5008 . . . . 5 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
12 fdm 6349 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
1312fveq2d 6500 . . . . . . 7 (𝐹:𝑌𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌))
1413mpteq1d 5012 . . . . . 6 (𝐹:𝑌𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
15143ad2ant3 1115 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
1611, 15sylan9eqr 2830 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
17 elex 3427 . . . . 5 (𝑋𝐴𝑋 ∈ V)
18173ad2ant1 1113 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ V)
19 simp3 1118 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
20 elfvdm 6528 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
21203ad2ant2 1114 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ dom fBas)
22 simp1 1116 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐴)
23 fex2 7451 . . . . 5 ((𝐹:𝑌𝑋𝑌 ∈ dom fBas ∧ 𝑋𝐴) → 𝐹 ∈ V)
2419, 21, 22, 23syl3anc 1351 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ V)
25 fvex 6509 . . . . . 6 (fBas‘𝑌) ∈ V
2625mptex 6810 . . . . 5 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2726a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
282, 16, 18, 24, 27ovmpod 7116 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2928fveq1d 6498 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵))
30 mpteq1 5011 . . . . . 6 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
3130rneqd 5648 . . . . 5 (𝑏 = 𝐵 → ran (𝑦𝑏 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦)))
3231oveq2d 6990 . . . 4 (𝑏 = 𝐵 → (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
33 eqid 2772 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
34 ovex 7006 . . . 4 (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ V
3532, 33, 34fvmpt 6593 . . 3 (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
36353ad2ant2 1114 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
3729, 36eqtrd 2808 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  Vcvv 3409  cmpt 5004  dom cdm 5403  ran crn 5404  cima 5406  wf 6181  cfv 6185  (class class class)co 6974  cmpo 6976  fBascfbas 20247  filGencfg 20248   FilMap cfm 22257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-fm 22262
This theorem is referenced by:  fmfil  22268  fmss  22270  elfm  22271  ucnextcn  22628  fmcfil  23590
  Copyright terms: Public domain W3C validator