MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Visualization version   GIF version

Theorem fmval 23859
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋   𝑦,𝑌   𝑦,𝐴

Proof of Theorem fmval
Dummy variables 𝑓 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 23854 . . . . 5 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
21a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
3 dmeq 5847 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43fveq2d 6832 . . . . . . 7 (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
54adantl 481 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 imaeq1 6008 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
87mpteq2dv 5187 . . . . . . . 8 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
98rneqd 5882 . . . . . . 7 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
106, 9oveqan12d 7371 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
115, 10mpteq12dv 5180 . . . . 5 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
12 fdm 6665 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
1312fveq2d 6832 . . . . . . 7 (𝐹:𝑌𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌))
1413mpteq1d 5183 . . . . . 6 (𝐹:𝑌𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
15143ad2ant3 1135 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
1611, 15sylan9eqr 2790 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
17 elex 3458 . . . . 5 (𝑋𝐴𝑋 ∈ V)
18173ad2ant1 1133 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ V)
19 simp3 1138 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
20 elfvdm 6862 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
21203ad2ant2 1134 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ dom fBas)
2219, 21fexd 7167 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6841 . . . . . 6 (fBas‘𝑌) ∈ V
2423mptex 7163 . . . . 5 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
262, 16, 18, 22, 25ovmpod 7504 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fveq1d 6830 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵))
28 mpteq1 5182 . . . . . 6 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2928rneqd 5882 . . . . 5 (𝑏 = 𝐵 → ran (𝑦𝑏 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦)))
3029oveq2d 7368 . . . 4 (𝑏 = 𝐵 → (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31 eqid 2733 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
32 ovex 7385 . . . 4 (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ V
3330, 31, 32fvmpt 6935 . . 3 (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
34333ad2ant2 1134 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
3527, 34eqtrd 2768 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5174  dom cdm 5619  ran crn 5620  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  fBascfbas 21281  filGencfg 21282   FilMap cfm 23849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-fm 23854
This theorem is referenced by:  fmfil  23860  fmss  23862  elfm  23863  ucnextcn  24219  fmcfil  25200
  Copyright terms: Public domain W3C validator