MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Visualization version   GIF version

Theorem fmval 23143
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋   𝑦,𝑌   𝑦,𝐴

Proof of Theorem fmval
Dummy variables 𝑓 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 23138 . . . . 5 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
21a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
3 dmeq 5825 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43fveq2d 6808 . . . . . . 7 (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
54adantl 483 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 imaeq1 5974 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
87mpteq2dv 5183 . . . . . . . 8 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
98rneqd 5859 . . . . . . 7 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
106, 9oveqan12d 7326 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
115, 10mpteq12dv 5172 . . . . 5 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
12 fdm 6639 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
1312fveq2d 6808 . . . . . . 7 (𝐹:𝑌𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌))
1413mpteq1d 5176 . . . . . 6 (𝐹:𝑌𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
15143ad2ant3 1135 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
1611, 15sylan9eqr 2798 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
17 elex 3455 . . . . 5 (𝑋𝐴𝑋 ∈ V)
18173ad2ant1 1133 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ V)
19 simp3 1138 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
20 elfvdm 6838 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
21203ad2ant2 1134 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ dom fBas)
2219, 21fexd 7135 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6817 . . . . . 6 (fBas‘𝑌) ∈ V
2423mptex 7131 . . . . 5 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
262, 16, 18, 22, 25ovmpod 7457 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fveq1d 6806 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵))
28 mpteq1 5174 . . . . . 6 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2928rneqd 5859 . . . . 5 (𝑏 = 𝐵 → ran (𝑦𝑏 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦)))
3029oveq2d 7323 . . . 4 (𝑏 = 𝐵 → (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31 eqid 2736 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
32 ovex 7340 . . . 4 (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ V
3330, 31, 32fvmpt 6907 . . 3 (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
34333ad2ant2 1134 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
3527, 34eqtrd 2776 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  cmpt 5164  dom cdm 5600  ran crn 5601  cima 5603  wf 6454  cfv 6458  (class class class)co 7307  cmpo 7309  fBascfbas 20634  filGencfg 20635   FilMap cfm 23133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-fm 23138
This theorem is referenced by:  fmfil  23144  fmss  23146  elfm  23147  ucnextcn  23505  fmcfil  24485
  Copyright terms: Public domain W3C validator