MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Visualization version   GIF version

Theorem fmval 23837
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋   𝑦,𝑌   𝑦,𝐴

Proof of Theorem fmval
Dummy variables 𝑓 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 23832 . . . . 5 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
21a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
3 dmeq 5870 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43fveq2d 6865 . . . . . . 7 (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
54adantl 481 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 imaeq1 6029 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
87mpteq2dv 5204 . . . . . . . 8 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
98rneqd 5905 . . . . . . 7 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
106, 9oveqan12d 7409 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
115, 10mpteq12dv 5197 . . . . 5 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
12 fdm 6700 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
1312fveq2d 6865 . . . . . . 7 (𝐹:𝑌𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌))
1413mpteq1d 5200 . . . . . 6 (𝐹:𝑌𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
15143ad2ant3 1135 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
1611, 15sylan9eqr 2787 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
17 elex 3471 . . . . 5 (𝑋𝐴𝑋 ∈ V)
18173ad2ant1 1133 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ V)
19 simp3 1138 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
20 elfvdm 6898 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
21203ad2ant2 1134 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ dom fBas)
2219, 21fexd 7204 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6874 . . . . . 6 (fBas‘𝑌) ∈ V
2423mptex 7200 . . . . 5 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
262, 16, 18, 22, 25ovmpod 7544 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fveq1d 6863 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵))
28 mpteq1 5199 . . . . . 6 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2928rneqd 5905 . . . . 5 (𝑏 = 𝐵 → ran (𝑦𝑏 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦)))
3029oveq2d 7406 . . . 4 (𝑏 = 𝐵 → (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31 eqid 2730 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
32 ovex 7423 . . . 4 (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ V
3330, 31, 32fvmpt 6971 . . 3 (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
34333ad2ant2 1134 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
3527, 34eqtrd 2765 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  dom cdm 5641  ran crn 5642  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  fBascfbas 21259  filGencfg 21260   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fm 23832
This theorem is referenced by:  fmfil  23838  fmss  23840  elfm  23841  ucnextcn  24198  fmcfil  25179
  Copyright terms: Public domain W3C validator