Step | Hyp | Ref
| Expression |
1 | | ovex 7302 |
. . . 4
⊢ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) ∈ V |
2 | | eqid 2740 |
. . . 4
⊢ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) |
3 | 1, 2 | fnmpti 6573 |
. . 3
⊢ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) Fn (fBas‘𝑌) |
4 | | df-fm 23079 |
. . . . . 6
⊢ FilMap =
(𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦))))) |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)))))) |
6 | | dmeq 5810 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
7 | 6 | adantl 482 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑓 = 𝐹) → dom 𝑓 = dom 𝐹) |
8 | | fdm 6606 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → dom 𝐹 = 𝑌) |
9 | 8 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → dom 𝐹 = 𝑌) |
10 | 7, 9 | sylan9eqr 2802 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑥 = 𝑋 ∧ 𝑓 = 𝐹)) → dom 𝑓 = 𝑌) |
11 | 10 | fveq2d 6773 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑥 = 𝑋 ∧ 𝑓 = 𝐹)) → (fBas‘dom 𝑓) = (fBas‘𝑌)) |
12 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
13 | | imaeq1 5962 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓 “ 𝑦) = (𝐹 “ 𝑦)) |
14 | 13 | mpteq2dv 5181 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)) = (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) |
15 | 14 | rneqd 5845 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)) = ran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))) |
16 | 12, 15 | oveqan12d 7288 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑓 = 𝐹) → (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦))) = (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) |
17 | 16 | adantl 482 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑥 = 𝑋 ∧ 𝑓 = 𝐹)) → (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦))) = (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) |
18 | 11, 17 | mpteq12dv 5170 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ (𝑥 = 𝑋 ∧ 𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦 ∈ 𝑏 ↦ (𝑓 “ 𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
19 | | elex 3449 |
. . . . . 6
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ V) |
20 | 19 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ V) |
21 | | fex2 7768 |
. . . . . 6
⊢ ((𝐹:𝑌⟶𝑋 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → 𝐹 ∈ V) |
22 | 21 | 3com13 1123 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → 𝐹 ∈ V) |
23 | | fvex 6782 |
. . . . . . 7
⊢
(fBas‘𝑌)
∈ V |
24 | 23 | mptex 7094 |
. . . . . 6
⊢ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) ∈ V |
25 | 24 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) ∈ V) |
26 | 5, 18, 20, 22, 25 | ovmpod 7417 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦))))) |
27 | 26 | fneq1d 6523 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ↔ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦 ∈ 𝑏 ↦ (𝐹 “ 𝑦)))) Fn (fBas‘𝑌))) |
28 | 3, 27 | mpbiri 257 |
. 2
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌)) |
29 | | simpl1 1190 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋 ∈ 𝐴) |
30 | | simpr 485 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌)) |
31 | | simpl3 1192 |
. . . 4
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌⟶𝑋) |
32 | | fmfil 23085 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)) |
33 | 29, 30, 31, 32 | syl3anc 1370 |
. . 3
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)) |
34 | 33 | ralrimiva 3110 |
. 2
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)) |
35 | | ffnfv 6987 |
. 2
⊢ ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) ↔ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))) |
36 | 28, 34, 35 | sylanbrc 583 |
1
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) |