MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmf Structured version   Visualization version   GIF version

Theorem fmf 23296
Description: Pushing-forward via a function induces a mapping on filters. (Contributed by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmf ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))

Proof of Theorem fmf
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7390 . . . 4 (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) ∈ V
2 eqid 2736 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
31, 2fnmpti 6644 . . 3 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)
4 df-fm 23289 . . . . . 6 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
54a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
6 dmeq 5859 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
76adantl 482 . . . . . . . 8 ((𝑥 = 𝑋𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
8 fdm 6677 . . . . . . . . 9 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
983ad2ant3 1135 . . . . . . . 8 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
107, 9sylan9eqr 2798 . . . . . . 7 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → dom 𝑓 = 𝑌)
1110fveq2d 6846 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (fBas‘dom 𝑓) = (fBas‘𝑌))
12 id 22 . . . . . . . 8 (𝑥 = 𝑋𝑥 = 𝑋)
13 imaeq1 6008 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1413mpteq2dv 5207 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
1514rneqd 5893 . . . . . . . 8 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
1612, 15oveqan12d 7376 . . . . . . 7 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1716adantl 482 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1811, 17mpteq12dv 5196 . . . . 5 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
19 elex 3463 . . . . . 6 (𝑋𝐴𝑋 ∈ V)
20193ad2ant1 1133 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝑋 ∈ V)
21 fex2 7870 . . . . . 6 ((𝐹:𝑌𝑋𝑌𝐵𝑋𝐴) → 𝐹 ∈ V)
22213com13 1124 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6855 . . . . . . 7 (fBas‘𝑌) ∈ V
2423mptex 7173 . . . . . 6 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
265, 18, 20, 22, 25ovmpod 7507 . . . 4 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fneq1d 6595 . . 3 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ↔ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)))
283, 27mpbiri 257 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
29 simpl1 1191 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐴)
30 simpr 485 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
31 simpl3 1193 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
32 fmfil 23295 . . . 4 ((𝑋𝐴𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3329, 30, 31, 32syl3anc 1371 . . 3 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3433ralrimiva 3143 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
35 ffnfv 7066 . 2 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) ↔ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)))
3628, 34, 35sylanbrc 583 1 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cmpt 5188  dom cdm 5633  ran crn 5634  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  fBascfbas 20784  filGencfg 20785  Filcfil 23196   FilMap cfm 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-fbas 20793  df-fg 20794  df-fil 23197  df-fm 23289
This theorem is referenced by:  rnelfm  23304
  Copyright terms: Public domain W3C validator