MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmf Structured version   Visualization version   GIF version

Theorem fmf 23888
Description: Pushing-forward via a function induces a mapping on filters. (Contributed by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmf ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))

Proof of Theorem fmf
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7443 . . . 4 (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) ∈ V
2 eqid 2736 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
31, 2fnmpti 6686 . . 3 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)
4 df-fm 23881 . . . . . 6 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
54a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
6 dmeq 5888 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
76adantl 481 . . . . . . . 8 ((𝑥 = 𝑋𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
8 fdm 6720 . . . . . . . . 9 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
983ad2ant3 1135 . . . . . . . 8 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
107, 9sylan9eqr 2793 . . . . . . 7 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → dom 𝑓 = 𝑌)
1110fveq2d 6885 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (fBas‘dom 𝑓) = (fBas‘𝑌))
12 id 22 . . . . . . . 8 (𝑥 = 𝑋𝑥 = 𝑋)
13 imaeq1 6047 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1413mpteq2dv 5220 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
1514rneqd 5923 . . . . . . . 8 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
1612, 15oveqan12d 7429 . . . . . . 7 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1716adantl 481 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1811, 17mpteq12dv 5212 . . . . 5 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
19 elex 3485 . . . . . 6 (𝑋𝐴𝑋 ∈ V)
20193ad2ant1 1133 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝑋 ∈ V)
21 fex2 7937 . . . . . 6 ((𝐹:𝑌𝑋𝑌𝐵𝑋𝐴) → 𝐹 ∈ V)
22213com13 1124 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6894 . . . . . . 7 (fBas‘𝑌) ∈ V
2423mptex 7220 . . . . . 6 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
265, 18, 20, 22, 25ovmpod 7564 . . . 4 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fneq1d 6636 . . 3 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ↔ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)))
283, 27mpbiri 258 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
29 simpl1 1192 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐴)
30 simpr 484 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
31 simpl3 1194 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
32 fmfil 23887 . . . 4 ((𝑋𝐴𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3329, 30, 31, 32syl3anc 1373 . . 3 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3433ralrimiva 3133 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
35 ffnfv 7114 . 2 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) ↔ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)))
3628, 34, 35sylanbrc 583 1 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cmpt 5206  dom cdm 5659  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  fBascfbas 21308  filGencfg 21309  Filcfil 23788   FilMap cfm 23876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-fbas 21317  df-fg 21318  df-fil 23789  df-fm 23881
This theorem is referenced by:  rnelfm  23896
  Copyright terms: Public domain W3C validator