Detailed syntax breakdown of Definition df-fne
Step | Hyp | Ref
| Expression |
1 | | cfne 34525 |
. 2
class
Fne |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
4 | 3 | cuni 4839 |
. . . . 5
class ∪ 𝑥 |
5 | | vy |
. . . . . . 7
setvar 𝑦 |
6 | 5 | cv 1538 |
. . . . . 6
class 𝑦 |
7 | 6 | cuni 4839 |
. . . . 5
class ∪ 𝑦 |
8 | 4, 7 | wceq 1539 |
. . . 4
wff ∪ 𝑥 =
∪ 𝑦 |
9 | | vz |
. . . . . . 7
setvar 𝑧 |
10 | 9 | cv 1538 |
. . . . . 6
class 𝑧 |
11 | 10 | cpw 4533 |
. . . . . . . 8
class 𝒫
𝑧 |
12 | 6, 11 | cin 3886 |
. . . . . . 7
class (𝑦 ∩ 𝒫 𝑧) |
13 | 12 | cuni 4839 |
. . . . . 6
class ∪ (𝑦
∩ 𝒫 𝑧) |
14 | 10, 13 | wss 3887 |
. . . . 5
wff 𝑧 ⊆ ∪ (𝑦
∩ 𝒫 𝑧) |
15 | 14, 9, 3 | wral 3064 |
. . . 4
wff
∀𝑧 ∈
𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧) |
16 | 8, 15 | wa 396 |
. . 3
wff (∪ 𝑥 =
∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧)) |
17 | 16, 2, 5 | copab 5136 |
. 2
class
{〈𝑥, 𝑦〉 ∣ (∪ 𝑥 =
∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} |
18 | 1, 17 | wceq 1539 |
1
wff Fne =
{〈𝑥, 𝑦〉 ∣ (∪ 𝑥 =
∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} |