Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne Structured version   Visualization version   GIF version

Theorem isfne 33800
Description: The predicate "𝐵 is finer than 𝐴". This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem isfne
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnerel 33799 . . . . 5 Rel Fne
21brrelex1i 5572 . . . 4 (𝐴Fne𝐵𝐴 ∈ V)
32anim1i 617 . . 3 ((𝐴Fne𝐵𝐵𝐶) → (𝐴 ∈ V ∧ 𝐵𝐶))
43ancoms 462 . 2 ((𝐵𝐶𝐴Fne𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
5 simpr 488 . . . . 5 ((𝐵𝐶𝑋 = 𝑌) → 𝑋 = 𝑌)
6 isfne.1 . . . . 5 𝑋 = 𝐴
7 isfne.2 . . . . 5 𝑌 = 𝐵
85, 6, 73eqtr3g 2856 . . . 4 ((𝐵𝐶𝑋 = 𝑌) → 𝐴 = 𝐵)
9 simpr 488 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 = 𝐵)
10 uniexg 7446 . . . . . . . 8 (𝐵𝐶 𝐵 ∈ V)
1110adantr 484 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵 ∈ V)
129, 11eqeltrd 2890 . . . . . 6 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
13 uniexb 7466 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1412, 13sylibr 237 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
15 simpl 486 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵𝐶)
1614, 15jca 515 . . . 4 ((𝐵𝐶 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
178, 16syldan 594 . . 3 ((𝐵𝐶𝑋 = 𝑌) → (𝐴 ∈ V ∧ 𝐵𝐶))
1817adantrr 716 . 2 ((𝐵𝐶 ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))) → (𝐴 ∈ V ∧ 𝐵𝐶))
19 unieq 4811 . . . . . 6 (𝑟 = 𝐴 𝑟 = 𝐴)
2019, 6eqtr4di 2851 . . . . 5 (𝑟 = 𝐴 𝑟 = 𝑋)
2120eqeq1d 2800 . . . 4 (𝑟 = 𝐴 → ( 𝑟 = 𝑠𝑋 = 𝑠))
22 raleq 3358 . . . 4 (𝑟 = 𝐴 → (∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)))
2321, 22anbi12d 633 . . 3 (𝑟 = 𝐴 → (( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥))))
24 unieq 4811 . . . . . 6 (𝑠 = 𝐵 𝑠 = 𝐵)
2524, 7eqtr4di 2851 . . . . 5 (𝑠 = 𝐵 𝑠 = 𝑌)
2625eqeq2d 2809 . . . 4 (𝑠 = 𝐵 → (𝑋 = 𝑠𝑋 = 𝑌))
27 ineq1 4131 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2827unieqd 4814 . . . . . 6 (𝑠 = 𝐵 (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2928sseq2d 3947 . . . . 5 (𝑠 = 𝐵 → (𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3029ralbidv 3162 . . . 4 (𝑠 = 𝐵 → (∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3126, 30anbi12d 633 . . 3 (𝑠 = 𝐵 → ((𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
32 df-fne 33798 . . 3 Fne = {⟨𝑟, 𝑠⟩ ∣ ( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥))}
3323, 31, 32brabg 5391 . 2 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
344, 18, 33pm5.21nd 801 1 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  Fnecfne 33797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-fne 33798
This theorem is referenced by:  isfne4  33801
  Copyright terms: Public domain W3C validator