![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnerel | Structured version Visualization version GIF version |
Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.) |
Ref | Expression |
---|---|
fnerel | ⊢ Rel Fne |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fne 36303 | . 2 ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel Fne |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 Rel wrel 5705 Fnecfne 36302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-fne 36303 |
This theorem is referenced by: isfne 36305 isfne4 36306 fnetr 36317 fneval 36318 fneer 36319 fnessref 36323 |
Copyright terms: Public domain | W3C validator |