Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnerel | Structured version Visualization version GIF version |
Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.) |
Ref | Expression |
---|---|
fnerel | ⊢ Rel Fne |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fne 34453 | . 2 ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel Fne |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 Rel wrel 5585 Fnecfne 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-fne 34453 |
This theorem is referenced by: isfne 34455 isfne4 34456 fnetr 34467 fneval 34468 fneer 34469 fnessref 34473 |
Copyright terms: Public domain | W3C validator |