| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnerel | Structured version Visualization version GIF version | ||
| Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.) |
| Ref | Expression |
|---|---|
| fnerel | ⊢ Rel Fne |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fne 36377 | . 2 ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel Fne |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∀wral 3047 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 Rel wrel 5621 Fnecfne 36376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-fne 36377 |
| This theorem is referenced by: isfne 36379 isfne4 36380 fnetr 36391 fneval 36392 fneer 36393 fnessref 36397 |
| Copyright terms: Public domain | W3C validator |