| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnerel | Structured version Visualization version GIF version | ||
| Description: Fineness is a relation. (Contributed by Jeff Hankins, 28-Sep-2009.) |
| Ref | Expression |
|---|---|
| fnerel | ⊢ Rel Fne |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fne 36404 | . 2 ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑧 ∈ 𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} | |
| 2 | 1 | relopabiv 5766 | 1 ⊢ Rel Fne |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∀wral 3048 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 Rel wrel 5626 Fnecfne 36403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5158 df-xp 5627 df-rel 5628 df-fne 36404 |
| This theorem is referenced by: isfne 36406 isfne4 36407 fnetr 36418 fneval 36419 fneer 36420 fnessref 36424 |
| Copyright terms: Public domain | W3C validator |