| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-frlm | Structured version Visualization version GIF version | ||
| Description: Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm 21752 that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-frlm | ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfrlm 21766 | . 2 class freeLMod | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | vi | . . 3 setvar 𝑖 | |
| 4 | cvv 3480 | . . 3 class V | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑟 |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑖 |
| 7 | crglmod 21171 | . . . . . . 7 class ringLMod | |
| 8 | 5, 7 | cfv 6561 | . . . . . 6 class (ringLMod‘𝑟) |
| 9 | 8 | csn 4626 | . . . . 5 class {(ringLMod‘𝑟)} |
| 10 | 6, 9 | cxp 5683 | . . . 4 class (𝑖 × {(ringLMod‘𝑟)}) |
| 11 | cdsmm 21751 | . . . 4 class ⊕m | |
| 12 | 5, 10, 11 | co 7431 | . . 3 class (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)})) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7433 | . 2 class (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) |
| 14 | 1, 13 | wceq 1540 | 1 wff freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: frlmval 21768 frlmrcl 21777 |
| Copyright terms: Public domain | W3C validator |