MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Visualization version   GIF version

Theorem frlmval 21294
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmval ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ π‘Š) β†’ 𝐹 = (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})))

Proof of Theorem frlmval
Dummy variables π‘Ÿ 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2 𝐹 = (𝑅 freeLMod 𝐼)
2 elex 3492 . . 3 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
3 elex 3492 . . 3 (𝐼 ∈ π‘Š β†’ 𝐼 ∈ V)
4 id 22 . . . . 5 (π‘Ÿ = 𝑅 β†’ π‘Ÿ = 𝑅)
5 fveq2 6888 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (ringLModβ€˜π‘Ÿ) = (ringLModβ€˜π‘…))
65sneqd 4639 . . . . . 6 (π‘Ÿ = 𝑅 β†’ {(ringLModβ€˜π‘Ÿ)} = {(ringLModβ€˜π‘…)})
76xpeq2d 5705 . . . . 5 (π‘Ÿ = 𝑅 β†’ (𝑖 Γ— {(ringLModβ€˜π‘Ÿ)}) = (𝑖 Γ— {(ringLModβ€˜π‘…)}))
84, 7oveq12d 7423 . . . 4 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ βŠ•m (𝑖 Γ— {(ringLModβ€˜π‘Ÿ)})) = (𝑅 βŠ•m (𝑖 Γ— {(ringLModβ€˜π‘…)})))
9 xpeq1 5689 . . . . 5 (𝑖 = 𝐼 β†’ (𝑖 Γ— {(ringLModβ€˜π‘…)}) = (𝐼 Γ— {(ringLModβ€˜π‘…)}))
109oveq2d 7421 . . . 4 (𝑖 = 𝐼 β†’ (𝑅 βŠ•m (𝑖 Γ— {(ringLModβ€˜π‘…)})) = (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})))
11 df-frlm 21293 . . . 4 freeLMod = (π‘Ÿ ∈ V, 𝑖 ∈ V ↦ (π‘Ÿ βŠ•m (𝑖 Γ— {(ringLModβ€˜π‘Ÿ)})))
12 ovex 7438 . . . 4 (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})) ∈ V
138, 10, 11, 12ovmpo 7564 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) β†’ (𝑅 freeLMod 𝐼) = (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})))
142, 3, 13syl2an 596 . 2 ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ π‘Š) β†’ (𝑅 freeLMod 𝐼) = (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})))
151, 14eqtrid 2784 1 ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ π‘Š) β†’ 𝐹 = (𝑅 βŠ•m (𝐼 Γ— {(ringLModβ€˜π‘…)})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4627   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405  ringLModcrglmod 20774   βŠ•m cdsmm 21277   freeLMod cfrlm 21292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frlm 21293
This theorem is referenced by:  frlmlmod  21295  frlmpws  21296  frlmlss  21297  frlmpwsfi  21298  frlmbas  21301
  Copyright terms: Public domain W3C validator