| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmval | Structured version Visualization version GIF version | ||
| Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| Ref | Expression |
|---|---|
| frlmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | . 2 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | elex 3457 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | elex 3457 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
| 4 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 5 | fveq2 6817 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅)) | |
| 6 | 5 | sneqd 4583 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)}) |
| 7 | 6 | xpeq2d 5641 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)})) |
| 8 | 4, 7 | oveq12d 7359 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)}))) |
| 9 | xpeq1 5625 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)})) | |
| 10 | 9 | oveq2d 7357 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 11 | df-frlm 21679 | . . . 4 ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | |
| 12 | ovex 7374 | . . . 4 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) ∈ V | |
| 13 | 8, 10, 11, 12 | ovmpo 7501 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 14 | 2, 3, 13 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 15 | 1, 14 | eqtrid 2778 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ringLModcrglmod 21101 ⊕m cdsmm 21663 freeLMod cfrlm 21678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frlm 21679 |
| This theorem is referenced by: frlmlmod 21681 frlmpws 21682 frlmlss 21683 frlmpwsfi 21684 frlmbas 21687 |
| Copyright terms: Public domain | W3C validator |