MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Visualization version   GIF version

Theorem frlmval 21657
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmval ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))

Proof of Theorem frlmval
Dummy variables 𝑟 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2 𝐹 = (𝑅 freeLMod 𝐼)
2 elex 3468 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3468 . . 3 (𝐼𝑊𝐼 ∈ V)
4 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
5 fveq2 6858 . . . . . . 7 (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅))
65sneqd 4601 . . . . . 6 (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)})
76xpeq2d 5668 . . . . 5 (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)}))
84, 7oveq12d 7405 . . . 4 (𝑟 = 𝑅 → (𝑟m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅m (𝑖 × {(ringLMod‘𝑅)})))
9 xpeq1 5652 . . . . 5 (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)}))
109oveq2d 7403 . . . 4 (𝑖 = 𝐼 → (𝑅m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
11 df-frlm 21656 . . . 4 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
12 ovex 7420 . . . 4 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) ∈ V
138, 10, 11, 12ovmpo 7549 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
142, 3, 13syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
151, 14eqtrid 2776 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  ringLModcrglmod 21079  m cdsmm 21640   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frlm 21656
This theorem is referenced by:  frlmlmod  21658  frlmpws  21659  frlmlss  21660  frlmpwsfi  21661  frlmbas  21664
  Copyright terms: Public domain W3C validator