Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmval | Structured version Visualization version GIF version |
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | elex 3450 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | elex 3450 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
4 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
5 | fveq2 6774 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅)) | |
6 | 5 | sneqd 4573 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)}) |
7 | 6 | xpeq2d 5619 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)})) |
8 | 4, 7 | oveq12d 7293 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)}))) |
9 | xpeq1 5603 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)})) | |
10 | 9 | oveq2d 7291 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
11 | df-frlm 20954 | . . . 4 ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | |
12 | ovex 7308 | . . . 4 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) ∈ V | |
13 | 8, 10, 11, 12 | ovmpo 7433 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
14 | 2, 3, 13 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ringLModcrglmod 20431 ⊕m cdsmm 20938 freeLMod cfrlm 20953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frlm 20954 |
This theorem is referenced by: frlmlmod 20956 frlmpws 20957 frlmlss 20958 frlmpwsfi 20959 frlmbas 20962 |
Copyright terms: Public domain | W3C validator |