Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmval | Structured version Visualization version GIF version |
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | elex 3440 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | elex 3440 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
4 | id 22 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
5 | fveq2 6756 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅)) | |
6 | 5 | sneqd 4570 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)}) |
7 | 6 | xpeq2d 5610 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)})) |
8 | 4, 7 | oveq12d 7273 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)}))) |
9 | xpeq1 5594 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)})) | |
10 | 9 | oveq2d 7271 | . . . 4 ⊢ (𝑖 = 𝐼 → (𝑅 ⊕m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
11 | df-frlm 20864 | . . . 4 ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | |
12 | ovex 7288 | . . . 4 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) ∈ V | |
13 | 8, 10, 11, 12 | ovmpo 7411 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
14 | 2, 3, 13 | syl2an 595 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 freeLMod 𝐼) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ringLModcrglmod 20346 ⊕m cdsmm 20848 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frlm 20864 |
This theorem is referenced by: frlmlmod 20866 frlmpws 20867 frlmlss 20868 frlmpwsfi 20869 frlmbas 20872 |
Copyright terms: Public domain | W3C validator |