MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Visualization version   GIF version

Theorem frlmval 20865
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmval ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))

Proof of Theorem frlmval
Dummy variables 𝑟 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2 𝐹 = (𝑅 freeLMod 𝐼)
2 elex 3440 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3440 . . 3 (𝐼𝑊𝐼 ∈ V)
4 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
5 fveq2 6756 . . . . . . 7 (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅))
65sneqd 4570 . . . . . 6 (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)})
76xpeq2d 5610 . . . . 5 (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)}))
84, 7oveq12d 7273 . . . 4 (𝑟 = 𝑅 → (𝑟m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅m (𝑖 × {(ringLMod‘𝑅)})))
9 xpeq1 5594 . . . . 5 (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)}))
109oveq2d 7271 . . . 4 (𝑖 = 𝐼 → (𝑅m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
11 df-frlm 20864 . . . 4 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
12 ovex 7288 . . . 4 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) ∈ V
138, 10, 11, 12ovmpo 7411 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
142, 3, 13syl2an 595 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
151, 14eqtrid 2790 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  ringLModcrglmod 20346  m cdsmm 20848   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frlm 20864
This theorem is referenced by:  frlmlmod  20866  frlmpws  20867  frlmlss  20868  frlmpwsfi  20869  frlmbas  20872
  Copyright terms: Public domain W3C validator