MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Visualization version   GIF version

Theorem frlmval 21699
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmval ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))

Proof of Theorem frlmval
Dummy variables 𝑟 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2 𝐹 = (𝑅 freeLMod 𝐼)
2 elex 3480 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3480 . . 3 (𝐼𝑊𝐼 ∈ V)
4 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
5 fveq2 6896 . . . . . . 7 (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅))
65sneqd 4642 . . . . . 6 (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)})
76xpeq2d 5708 . . . . 5 (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)}))
84, 7oveq12d 7437 . . . 4 (𝑟 = 𝑅 → (𝑟m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅m (𝑖 × {(ringLMod‘𝑅)})))
9 xpeq1 5692 . . . . 5 (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)}))
109oveq2d 7435 . . . 4 (𝑖 = 𝐼 → (𝑅m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
11 df-frlm 21698 . . . 4 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
12 ovex 7452 . . . 4 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) ∈ V
138, 10, 11, 12ovmpo 7581 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
142, 3, 13syl2an 594 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
151, 14eqtrid 2777 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  {csn 4630   × cxp 5676  cfv 6549  (class class class)co 7419  ringLModcrglmod 21069  m cdsmm 21682   freeLMod cfrlm 21697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-frlm 21698
This theorem is referenced by:  frlmlmod  21700  frlmpws  21701  frlmlss  21702  frlmpwsfi  21703  frlmbas  21706
  Copyright terms: Public domain W3C validator