![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmval | Structured version Visualization version GIF version |
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | β’ πΉ = (π freeLMod πΌ) |
Ref | Expression |
---|---|
frlmval | β’ ((π β π β§ πΌ β π) β πΉ = (π βm (πΌ Γ {(ringLModβπ )}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 β’ πΉ = (π freeLMod πΌ) | |
2 | elex 3492 | . . 3 β’ (π β π β π β V) | |
3 | elex 3492 | . . 3 β’ (πΌ β π β πΌ β V) | |
4 | id 22 | . . . . 5 β’ (π = π β π = π ) | |
5 | fveq2 6888 | . . . . . . 7 β’ (π = π β (ringLModβπ) = (ringLModβπ )) | |
6 | 5 | sneqd 4639 | . . . . . 6 β’ (π = π β {(ringLModβπ)} = {(ringLModβπ )}) |
7 | 6 | xpeq2d 5705 | . . . . 5 β’ (π = π β (π Γ {(ringLModβπ)}) = (π Γ {(ringLModβπ )})) |
8 | 4, 7 | oveq12d 7423 | . . . 4 β’ (π = π β (π βm (π Γ {(ringLModβπ)})) = (π βm (π Γ {(ringLModβπ )}))) |
9 | xpeq1 5689 | . . . . 5 β’ (π = πΌ β (π Γ {(ringLModβπ )}) = (πΌ Γ {(ringLModβπ )})) | |
10 | 9 | oveq2d 7421 | . . . 4 β’ (π = πΌ β (π βm (π Γ {(ringLModβπ )})) = (π βm (πΌ Γ {(ringLModβπ )}))) |
11 | df-frlm 21293 | . . . 4 β’ freeLMod = (π β V, π β V β¦ (π βm (π Γ {(ringLModβπ)}))) | |
12 | ovex 7438 | . . . 4 β’ (π βm (πΌ Γ {(ringLModβπ )})) β V | |
13 | 8, 10, 11, 12 | ovmpo 7564 | . . 3 β’ ((π β V β§ πΌ β V) β (π freeLMod πΌ) = (π βm (πΌ Γ {(ringLModβπ )}))) |
14 | 2, 3, 13 | syl2an 596 | . 2 β’ ((π β π β§ πΌ β π) β (π freeLMod πΌ) = (π βm (πΌ Γ {(ringLModβπ )}))) |
15 | 1, 14 | eqtrid 2784 | 1 β’ ((π β π β§ πΌ β π) β πΉ = (π βm (πΌ Γ {(ringLModβπ )}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4627 Γ cxp 5673 βcfv 6540 (class class class)co 7405 ringLModcrglmod 20774 βm cdsmm 21277 freeLMod cfrlm 21292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frlm 21293 |
This theorem is referenced by: frlmlmod 21295 frlmpws 21296 frlmlss 21297 frlmpwsfi 21298 frlmbas 21301 |
Copyright terms: Public domain | W3C validator |