MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmval Structured version   Visualization version   GIF version

Theorem frlmval 21680
Description: Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmval ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))

Proof of Theorem frlmval
Dummy variables 𝑟 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmval.f . 2 𝐹 = (𝑅 freeLMod 𝐼)
2 elex 3457 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3457 . . 3 (𝐼𝑊𝐼 ∈ V)
4 id 22 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
5 fveq2 6817 . . . . . . 7 (𝑟 = 𝑅 → (ringLMod‘𝑟) = (ringLMod‘𝑅))
65sneqd 4583 . . . . . 6 (𝑟 = 𝑅 → {(ringLMod‘𝑟)} = {(ringLMod‘𝑅)})
76xpeq2d 5641 . . . . 5 (𝑟 = 𝑅 → (𝑖 × {(ringLMod‘𝑟)}) = (𝑖 × {(ringLMod‘𝑅)}))
84, 7oveq12d 7359 . . . 4 (𝑟 = 𝑅 → (𝑟m (𝑖 × {(ringLMod‘𝑟)})) = (𝑅m (𝑖 × {(ringLMod‘𝑅)})))
9 xpeq1 5625 . . . . 5 (𝑖 = 𝐼 → (𝑖 × {(ringLMod‘𝑅)}) = (𝐼 × {(ringLMod‘𝑅)}))
109oveq2d 7357 . . . 4 (𝑖 = 𝐼 → (𝑅m (𝑖 × {(ringLMod‘𝑅)})) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
11 df-frlm 21679 . . . 4 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
12 ovex 7374 . . . 4 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) ∈ V
138, 10, 11, 12ovmpo 7501 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
142, 3, 13syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
151, 14eqtrid 2778 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4571   × cxp 5609  cfv 6476  (class class class)co 7341  ringLModcrglmod 21101  m cdsmm 21663   freeLMod cfrlm 21678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frlm 21679
This theorem is referenced by:  frlmlmod  21681  frlmpws  21682  frlmlss  21683  frlmpwsfi  21684  frlmbas  21687
  Copyright terms: Public domain W3C validator