![]() |
Metamath
Proof Explorer Theorem List (p. 214 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfldtsetOLD 21301 | Obsolete version of cnfldtset 21288 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
Theorem | cnfldleOLD 21302 | Obsolete version of cnfldle 21289 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ≤ = (le‘ℂfld) | ||
Theorem | cnflddsOLD 21303 | Obsolete version of cnfldds 21290 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
Theorem | cnfldunifOLD 21304 | Obsolete version of cnfldunif 21291 as of 27-Apr-2025. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
Theorem | cnfldfunOLD 21305 | Obsolete version of cnfldfun 21292 as of 27-Apr-2025. (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALTOLD 21306 | Obsolete version of cnfldfunALT 21293 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALTOLDOLD 21307 | Obsolete proof of cnfldfunALTOLD 21306 as of 10-Nov-2024. The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | xrsstr 21308 | The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 Struct ⟨1, ;12⟩ | ||
Theorem | xrsex 21309 | The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ V | ||
Theorem | xrsbas 21310 | The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ* = (Base‘ℝ*𝑠) | ||
Theorem | xrsadd 21311 | The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 = (+g‘ℝ*𝑠) | ||
Theorem | xrsmul 21312 | The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e = (.r‘ℝ*𝑠) | ||
Theorem | xrstset 21313 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | ||
Theorem | xrsle 21314 | The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ≤ = (le‘ℝ*𝑠) | ||
Theorem | cncrng 21315 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) Avoid ax-mulf 11213. (Revised by GG, 31-Mar-2025.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cncrngOLD 21316 | Obsolete version of cncrng 21315 as of 30-Apr-2025. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cnring 21317 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ Ring | ||
Theorem | xrsmcmn 21318 | The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 21335.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd | ||
Theorem | cnfld0 21319 | Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 0 = (0g‘ℂfld) | ||
Theorem | cnfld1 21320 | One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11213. (Revised by GG, 31-Mar-2025.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfld1OLD 21321 | Obsolete version of cnfld1 21320 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfldneg 21322 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
Theorem | cnfldplusf 21323 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ + = (+𝑓‘ℂfld) | ||
Theorem | cnfldsub 21324 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ − = (-g‘ℂfld) | ||
Theorem | cndrng 21325 | The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11213. (Revised by GG, 30-Apr-2025.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cndrngOLD 21326 | Obsolete version of cndrng 21325 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cnflddiv 21327 | The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) Avoid ax-mulf 11213. (Revised by GG, 30-Apr-2025.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnflddivOLD 21328 | Obsolete version of cnflddiv 21327 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnfldinv 21329 | The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | ||
Theorem | cnfldmulg 21330 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | cnfldexp 21331 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
Theorem | cnsrng 21332 | The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ℂfld ∈ *-Ring | ||
Theorem | xrsmgm 21333 | The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ Mgm | ||
Theorem | xrsnsgrp 21334 | The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∉ Smgrp | ||
Theorem | xrsmgmdifsgrp 21335 | The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn 21318. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ (Mgm ∖ Smgrp) | ||
Theorem | xrs1mnd 21336 | The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21335. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | xrs10 21337 | The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | xrs1cmn 21338 | The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | xrge0subm 21339 | The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) | ||
Theorem | xrge0cmn 21340 | The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | ||
Theorem | xrsds 21341* | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) | ||
Theorem | xrsdsval 21342 | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) | ||
Theorem | xrsdsreval 21343 | The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | xrsdsreclblem 21344 | Lemma for xrsdsreclb 21345. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | xrsdsreclb 21345 | The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | cnsubmlem 21346* | Lemma for nn0subm 21354 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
Theorem | cnsubglem 21347* | Lemma for resubdrg 21539 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
Theorem | cnsubrglem 21348* | Lemma for resubdrg 21539 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11213. (Revised by GG, 30-Apr-2025.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubrglemOLD 21349* | Obsolete version of cnsubrglem 21348 as of 30-Apr-2025. (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubdrglem 21350* | Lemma for resubdrg 21539 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) | ||
Theorem | qsubdrg 21351 | The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | ||
Theorem | zsubrg 21352 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ ∈ (SubRing‘ℂfld) | ||
Theorem | gzsubrg 21353 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
Theorem | nn0subm 21354 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
Theorem | rege0subm 21355 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
Theorem | absabv 21356 | The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ abs ∈ (AbsVal‘ℂfld) | ||
Theorem | zsssubrg 21357 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
Theorem | qsssubdrg 21358 | The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅) | ||
Theorem | cnsubrg 21359 | There are no subrings of the complex numbers strictly between ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ}) | ||
Theorem | cnmgpabl 21360 | The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ 𝑀 ∈ Abel | ||
Theorem | cnmgpid 21361 | The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ (0g‘𝑀) = 1 | ||
Theorem | cnmsubglem 21362* | Lemma for rpmsubg 21363 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubGrp‘𝑀) | ||
Theorem | rpmsubg 21363 | The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ ℝ+ ∈ (SubGrp‘𝑀) | ||
Theorem | gzrngunitlem 21364 | Lemma for gzrngunit 21365. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) | ||
Theorem | gzrngunit 21365 | The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) | ||
Theorem | gsumfsum 21366* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | regsumfsum 21367* | Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 21366. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | expmhm 21368* | Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑁 = (ℂfld ↾s ℕ0) & ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴↑𝑥)) ∈ (𝑁 MndHom 𝑀)) | ||
Theorem | nn0srg 21369 | The nonnegative integers form a semiring (commutative by subcmn 19791). (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ SRing | ||
Theorem | rge0srg 21370 | The nonnegative real numbers form a semiring (commutative by subcmn 19791). (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ (ℂfld ↾s (0[,)+∞)) ∈ SRing | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 21374 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 21392), and zringbas 21378 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 21372 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 21372). | ||
Syntax | czring 21371 | Extend class notation with the (unital) ring of integers. |
class ℤring | ||
Definition | df-zring 21372 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
⊢ ℤring = (ℂfld ↾s ℤ) | ||
Theorem | zringcrng 21373 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ CRing | ||
Theorem | zringring 21374 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Ring | ||
Theorem | zringrng 21375 | The ring of integers is a non-unital ring. (Contributed by AV, 17-Mar-2025.) |
⊢ ℤring ∈ Rng | ||
Theorem | zringabl 21376 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Abel | ||
Theorem | zringgrp 21377 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
⊢ ℤring ∈ Grp | ||
Theorem | zringbas 21378 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤ = (Base‘ℤring) | ||
Theorem | zringplusg 21379 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ + = (+g‘ℤring) | ||
Theorem | zringsub 21380 | The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmulg 21381 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | zringmulr 21382 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ · = (.r‘ℤring) | ||
Theorem | zring0 21383 | The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 0 = (0g‘ℤring) | ||
Theorem | zring1 21384 | The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 1 = (1r‘ℤring) | ||
Theorem | zringnzr 21385 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ℤring ∈ NzRing | ||
Theorem | dvdsrzring 21386 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ ∥ = (∥r‘ℤring) | ||
Theorem | zringlpirlem1 21387 | Lemma for zringlpir 21392. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) ⇒ ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) | ||
Theorem | zringlpirlem2 21388 | Lemma for zringlpir 21392. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐼) | ||
Theorem | zringlpirlem3 21389 | Lemma for zringlpir 21392. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝐺 ∥ 𝑋) | ||
Theorem | zringinvg 21390 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
Theorem | zringunit 21391 | The units of ℤ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) | ||
Theorem | zringlpir 21392 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ℤring ∈ LPIR | ||
Theorem | zringndrg 21393 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
⊢ ℤring ∉ DivRing | ||
Theorem | zringcyg 21394 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤring ∈ CycGrp | ||
Theorem | zringsubgval 21395 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmpg 21396 | The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
Theorem | prmirredlem 21397 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) | ||
Theorem | dfprm2 21398 | The positive irreducible elements of ℤ are the prime numbers. This is an alternative way to define ℙ. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ ℙ = (ℕ ∩ 𝐼) | ||
Theorem | prmirred 21399 | The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) | ||
Theorem | expghm 21400* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |