| Metamath
Proof Explorer Theorem List (p. 214 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cncrngOLD 21301 | Obsolete version of cncrng 21300 as of 30-Apr-2025. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld ∈ CRing | ||
| Theorem | cnring 21302 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ ℂfld ∈ Ring | ||
| Theorem | xrsmcmn 21303 | The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 21320.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd | ||
| Theorem | cnfld0 21304 | Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 0 = (0g‘ℂfld) | ||
| Theorem | cnfld1 21305 | One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11148. (Revised by GG, 31-Mar-2025.) |
| ⊢ 1 = (1r‘ℂfld) | ||
| Theorem | cnfld1OLD 21306 | Obsolete version of cnfld1 21305 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 1 = (1r‘ℂfld) | ||
| Theorem | cnfldneg 21307 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
| Theorem | cnfldplusf 21308 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ + = (+𝑓‘ℂfld) | ||
| Theorem | cnfldsub 21309 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘ℂfld) | ||
| Theorem | cndrng 21310 | The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11148. (Revised by GG, 30-Apr-2025.) |
| ⊢ ℂfld ∈ DivRing | ||
| Theorem | cndrngOLD 21311 | Obsolete version of cndrng 21310 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld ∈ DivRing | ||
| Theorem | cnflddiv 21312 | The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) Avoid ax-mulf 11148. (Revised by GG, 30-Apr-2025.) |
| ⊢ / = (/r‘ℂfld) | ||
| Theorem | cnflddivOLD 21313 | Obsolete version of cnflddiv 21312 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ / = (/r‘ℂfld) | ||
| Theorem | cnfldinv 21314 | The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | ||
| Theorem | cnfldmulg 21315 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | cnfldexp 21316 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
| Theorem | cnsrng 21317 | The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ℂfld ∈ *-Ring | ||
| Theorem | xrsmgm 21318 | The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020.) |
| ⊢ ℝ*𝑠 ∈ Mgm | ||
| Theorem | xrsnsgrp 21319 | The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
| ⊢ ℝ*𝑠 ∉ Smgrp | ||
| Theorem | xrsmgmdifsgrp 21320 | The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn 21303. (Contributed by AV, 30-Jan-2020.) |
| ⊢ ℝ*𝑠 ∈ (Mgm ∖ Smgrp) | ||
| Theorem | xrs1mnd 21321 | The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21320. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ Mnd | ||
| Theorem | xrs10 21322 | The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 0 = (0g‘𝑅) | ||
| Theorem | xrs1cmn 21323 | The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ CMnd | ||
| Theorem | xrge0subm 21324 | The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) | ||
| Theorem | xrge0cmn 21325 | The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | ||
| Theorem | xrsds 21326* | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) | ||
| Theorem | xrsdsval 21327 | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) | ||
| Theorem | xrsdsreval 21328 | The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
| Theorem | xrsdsreclblem 21329 | Lemma for xrsdsreclb 21330. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
| Theorem | xrsdsreclb 21330 | The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
| Theorem | cnsubmlem 21331* | Lemma for nn0subm 21339 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
| Theorem | cnsubglem 21332* | Lemma for resubdrg 21517 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
| Theorem | cnsubrglem 21333* | Lemma for resubdrg 21517 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11148. (Revised by GG, 30-Apr-2025.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
| Theorem | cnsubrglemOLD 21334* | Obsolete version of cnsubrglem 21333 as of 30-Apr-2025. (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
| Theorem | cnsubdrglem 21335* | Lemma for resubdrg 21517 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) | ||
| Theorem | qsubdrg 21336 | The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | ||
| Theorem | zsubrg 21337 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ ℤ ∈ (SubRing‘ℂfld) | ||
| Theorem | gzsubrg 21338 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
| Theorem | nn0subm 21339 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
| Theorem | rege0subm 21340 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
| Theorem | absabv 21341 | The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ abs ∈ (AbsVal‘ℂfld) | ||
| Theorem | zsssubrg 21342 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
| Theorem | qsssubdrg 21343 | The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅) | ||
| Theorem | cnsubrg 21344 | There are no subrings of the complex numbers strictly between ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ}) | ||
| Theorem | cnmgpabl 21345 | The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ 𝑀 ∈ Abel | ||
| Theorem | cnmgpid 21346 | The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ (0g‘𝑀) = 1 | ||
| Theorem | cnmsubglem 21347* | Lemma for rpmsubg 21348 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubGrp‘𝑀) | ||
| Theorem | rpmsubg 21348 | The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ ℝ+ ∈ (SubGrp‘𝑀) | ||
| Theorem | gzrngunitlem 21349 | Lemma for gzrngunit 21350. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) | ||
| Theorem | gzrngunit 21350 | The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) | ||
| Theorem | gsumfsum 21351* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | regsumfsum 21352* | Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 21351. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | expmhm 21353* | Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑁 = (ℂfld ↾s ℕ0) & ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴↑𝑥)) ∈ (𝑁 MndHom 𝑀)) | ||
| Theorem | nn0srg 21354 | The nonnegative integers form a semiring (commutative by subcmn 19767). (Contributed by Thierry Arnoux, 1-May-2018.) |
| ⊢ (ℂfld ↾s ℕ0) ∈ SRing | ||
| Theorem | rge0srg 21355 | The nonnegative real numbers form a semiring (commutative by subcmn 19767). (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ (ℂfld ↾s (0[,)+∞)) ∈ SRing | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 21359 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 21377), and zringbas 21363 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 21357 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 21357). | ||
| Syntax | czring 21356 | Extend class notation with the (unital) ring of integers. |
| class ℤring | ||
| Definition | df-zring 21357 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
| ⊢ ℤring = (ℂfld ↾s ℤ) | ||
| Theorem | zringcrng 21358 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ CRing | ||
| Theorem | zringring 21359 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ Ring | ||
| Theorem | zringrng 21360 | The ring of integers is a non-unital ring. (Contributed by AV, 17-Mar-2025.) |
| ⊢ ℤring ∈ Rng | ||
| Theorem | zringabl 21361 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
| ⊢ ℤring ∈ Abel | ||
| Theorem | zringgrp 21362 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
| ⊢ ℤring ∈ Grp | ||
| Theorem | zringbas 21363 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ℤ = (Base‘ℤring) | ||
| Theorem | zringplusg 21364 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ + = (+g‘ℤring) | ||
| Theorem | zringsub 21365 | The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025.) |
| ⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | zringmulg 21366 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
| Theorem | zringmulr 21367 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ · = (.r‘ℤring) | ||
| Theorem | zring0 21368 | The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 0 = (0g‘ℤring) | ||
| Theorem | zring1 21369 | The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
| ⊢ 1 = (1r‘ℤring) | ||
| Theorem | zringnzr 21370 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
| ⊢ ℤring ∈ NzRing | ||
| Theorem | dvdsrzring 21371 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ∥ = (∥r‘ℤring) | ||
| Theorem | zringlpirlem1 21372 | Lemma for zringlpir 21377. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
| ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) ⇒ ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) | ||
| Theorem | zringlpirlem2 21373 | Lemma for zringlpir 21377. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐼) | ||
| Theorem | zringlpirlem3 21374 | Lemma for zringlpir 21377. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝐺 ∥ 𝑋) | ||
| Theorem | zringinvg 21375 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
| Theorem | zringunit 21376 | The units of ℤ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| ⊢ (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) | ||
| Theorem | zringlpir 21377 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ ℤring ∈ LPIR | ||
| Theorem | zringndrg 21378 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
| ⊢ ℤring ∉ DivRing | ||
| Theorem | zringcyg 21379 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
| ⊢ ℤring ∈ CycGrp | ||
| Theorem | zringsubgval 21380 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
| ⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | zringmpg 21381 | The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
| ⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
| Theorem | prmirredlem 21382 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) | ||
| Theorem | dfprm2 21383 | The positive irreducible elements of ℤ are the prime numbers. This is an alternative way to define ℙ. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ ℙ = (ℕ ∩ 𝐼) | ||
| Theorem | prmirred 21384 | The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) | ||
| Theorem | expghm 21385* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
| Theorem | mulgghm2 21386* | The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) | ||
| Theorem | mulgrhm 21387* | The powers of the element 1 give a ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | ||
| Theorem | mulgrhm2 21388* | The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| ⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | ||
| Theorem | irinitoringc 21389 | The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ℤring ∈ 𝑈) & ⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) | ||
| Theorem | nzerooringczr 21390 | There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ℤring ∈ 𝑈) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = ∅) | ||
In this subsubsection, an example is given for a condition for a non-unital ring to be unital. This example is already mentioned in the comment for df-subrg 20479: " The subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring." The theorems in this subsubsection do not assume that 𝑅 = (ℤring ×s ℤring) is a ring (which can be proven directly very easily, see pzriprng 21407), but provide the prerequisites for ring2idlqusb 21220 to show that 𝑅 is a unital ring, and for ring2idlqus1 21229 to show that 〈1, 1〉 is its ring unity. | ||
| Theorem | pzriprnglem1 21391 | Lemma 1 for pzriprng 21407: 𝑅 is a non-unital (actually a unital!) ring. (Contributed by AV, 17-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) ⇒ ⊢ 𝑅 ∈ Rng | ||
| Theorem | pzriprnglem2 21392 | Lemma 2 for pzriprng 21407: The base set of 𝑅 is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) ⇒ ⊢ (Base‘𝑅) = (ℤ × ℤ) | ||
| Theorem | pzriprnglem3 21393* | Lemma 3 for pzriprng 21407: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) | ||
| Theorem | pzriprnglem4 21394 | Lemma 4 for pzriprng 21407: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ 𝐼 ∈ (SubGrp‘𝑅) | ||
| Theorem | pzriprnglem5 21395 | Lemma 5 for pzriprng 21407: 𝐼 is a subring of the non-unital ring 𝑅. (Contributed by AV, 18-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ 𝐼 ∈ (SubRng‘𝑅) | ||
| Theorem | pzriprnglem6 21396 | Lemma 6 for pzriprng 21407: 𝐽 has a ring unity. (Contributed by AV, 19-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ (𝑋 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑋) = 𝑋 ∧ (𝑋(.r‘𝐽)〈1, 0〉) = 𝑋)) | ||
| Theorem | pzriprnglem7 21397 | Lemma 7 for pzriprng 21407: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ 𝐽 ∈ Ring | ||
| Theorem | pzriprnglem8 21398 | Lemma 8 for pzriprng 21407: 𝐼 resp. 𝐽 is a two-sided ideal of the non-unital ring 𝑅. (Contributed by AV, 21-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ 𝐼 ∈ (2Ideal‘𝑅) | ||
| Theorem | pzriprnglem9 21399 | Lemma 9 for pzriprng 21407: The ring unity of the ring 𝐽. (Contributed by AV, 22-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ 1 = 〈1, 0〉 | ||
| Theorem | pzriprnglem10 21400 | Lemma 10 for pzriprng 21407: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.) |
| ⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [〈𝑋, 𝑌〉] ∼ = (ℤ × {𝑌})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |