Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmrcl | Structured version Visualization version GIF version |
Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmrcl.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmrcl | ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmrcl.b | . 2 ⊢ 𝐵 = (Base‘𝐹) | |
3 | df-frlm 21052 | . . 3 ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | |
4 | 3 | reldmmpo 7462 | . 2 ⊢ Rel dom freeLMod |
5 | 1, 2, 4 | strov2rcl 17009 | 1 ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4572 × cxp 5612 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 ringLModcrglmod 20529 ⊕m cdsmm 21036 freeLMod cfrlm 21051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-1cn 11022 ax-addcl 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-nn 12067 df-slot 16972 df-ndx 16984 df-base 17002 df-frlm 21052 |
This theorem is referenced by: frlmbasfsupp 21063 frlmbasmap 21064 frlmvscafval 21071 |
Copyright terms: Public domain | W3C validator |