![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmrcl | Structured version Visualization version GIF version |
Description: If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | β’ πΉ = (π freeLMod πΌ) |
frlmrcl.b | β’ π΅ = (BaseβπΉ) |
Ref | Expression |
---|---|
frlmrcl | β’ (π β π΅ β π β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . 2 β’ πΉ = (π freeLMod πΌ) | |
2 | frlmrcl.b | . 2 β’ π΅ = (BaseβπΉ) | |
3 | df-frlm 21686 | . . 3 β’ freeLMod = (π β V, π β V β¦ (π βm (π Γ {(ringLModβπ)}))) | |
4 | 3 | reldmmpo 7559 | . 2 β’ Rel dom freeLMod |
5 | 1, 2, 4 | strov2rcl 17193 | 1 β’ (π β π΅ β π β V) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3471 {csn 4630 Γ cxp 5678 βcfv 6551 (class class class)co 7424 Basecbs 17185 ringLModcrglmod 21062 βm cdsmm 21670 freeLMod cfrlm 21685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-1cn 11202 ax-addcl 11204 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-nn 12249 df-slot 17156 df-ndx 17168 df-base 17186 df-frlm 21686 |
This theorem is referenced by: frlmbasfsupp 21697 frlmbasmap 21698 frlmvscafval 21705 |
Copyright terms: Public domain | W3C validator |