Step | Hyp | Ref
| Expression |
1 | | opeq1 4874 |
. . . . 5
⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩) |
2 | 1 | breq2d 5161 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 Btwn ⟨𝐴, 𝑐⟩)) |
3 | 2 | anbi1d 631 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩))) |
4 | 1 | breq1d 5159 |
. . . 4
⊢ (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩)) |
5 | 4 | anbi1d 631 |
. . 3
⊢ (𝑎 = 𝐴 → ((⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))) |
6 | | opeq1 4874 |
. . . . 5
⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩) |
7 | 6 | breq1d 5159 |
. . . 4
⊢ (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩)) |
8 | 7 | anbi1d 631 |
. . 3
⊢ (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩))) |
9 | 3, 5, 8 | 3anbi123d 1437 |
. 2
⊢ (𝑎 = 𝐴 → (((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)))) |
10 | | breq1 5152 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝑐⟩)) |
11 | 10 | anbi1d 631 |
. . 3
⊢ (𝑏 = 𝐵 → ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩))) |
12 | | opeq1 4874 |
. . . . 5
⊢ (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩) |
13 | 12 | breq1d 5159 |
. . . 4
⊢ (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)) |
14 | 13 | anbi2d 630 |
. . 3
⊢ (𝑏 = 𝐵 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))) |
15 | 11, 14 | 3anbi12d 1438 |
. 2
⊢ (𝑏 = 𝐵 → (((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)))) |
16 | | opeq2 4875 |
. . . . 5
⊢ (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩) |
17 | 16 | breq2d 5161 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝐶⟩)) |
18 | 17 | anbi1d 631 |
. . 3
⊢ (𝑐 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩))) |
19 | 16 | breq1d 5159 |
. . . 4
⊢ (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩)) |
20 | | opeq2 4875 |
. . . . 5
⊢ (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩) |
21 | 20 | breq1d 5159 |
. . . 4
⊢ (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)) |
22 | 19, 21 | anbi12d 632 |
. . 3
⊢ (𝑐 = 𝐶 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))) |
23 | | opeq1 4874 |
. . . . 5
⊢ (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩) |
24 | 23 | breq1d 5159 |
. . . 4
⊢ (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩ ↔ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩)) |
25 | 24 | anbi2d 630 |
. . 3
⊢ (𝑐 = 𝐶 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩))) |
26 | 18, 22, 25 | 3anbi123d 1437 |
. 2
⊢ (𝑐 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩)))) |
27 | | opeq2 4875 |
. . . . 5
⊢ (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩) |
28 | 27 | breq1d 5159 |
. . . 4
⊢ (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩)) |
29 | | opeq2 4875 |
. . . . 5
⊢ (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩) |
30 | 29 | breq1d 5159 |
. . . 4
⊢ (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)) |
31 | 28, 30 | anbi12d 632 |
. . 3
⊢ (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩))) |
32 | 31 | 3anbi3d 1443 |
. 2
⊢ (𝑑 = 𝐷 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)))) |
33 | | opeq1 4874 |
. . . . 5
⊢ (𝑒 = 𝐸 → ⟨𝑒, 𝑔⟩ = ⟨𝐸, 𝑔⟩) |
34 | 33 | breq2d 5161 |
. . . 4
⊢ (𝑒 = 𝐸 → (𝑓 Btwn ⟨𝑒, 𝑔⟩ ↔ 𝑓 Btwn ⟨𝐸, 𝑔⟩)) |
35 | 34 | anbi2d 630 |
. . 3
⊢ (𝑒 = 𝐸 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩))) |
36 | 33 | breq2d 5161 |
. . . 4
⊢ (𝑒 = 𝐸 → (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩)) |
37 | 36 | anbi1d 631 |
. . 3
⊢ (𝑒 = 𝐸 → ((⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))) |
38 | | opeq1 4874 |
. . . . 5
⊢ (𝑒 = 𝐸 → ⟨𝑒, ℎ⟩ = ⟨𝐸, ℎ⟩) |
39 | 38 | breq2d 5161 |
. . . 4
⊢ (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩)) |
40 | 39 | anbi1d 631 |
. . 3
⊢ (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩))) |
41 | 35, 37, 40 | 3anbi123d 1437 |
. 2
⊢ (𝑒 = 𝐸 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)))) |
42 | | breq1 5152 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑓 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝑔⟩)) |
43 | 42 | anbi2d 630 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩))) |
44 | | opeq1 4874 |
. . . . 5
⊢ (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩) |
45 | 44 | breq2d 5161 |
. . . 4
⊢ (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩)) |
46 | 45 | anbi2d 630 |
. . 3
⊢ (𝑓 = 𝐹 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩))) |
47 | 43, 46 | 3anbi12d 1438 |
. 2
⊢ (𝑓 = 𝐹 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)))) |
48 | | opeq2 4875 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⟨𝐸, 𝑔⟩ = ⟨𝐸, 𝐺⟩) |
49 | 48 | breq2d 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝐹 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝐺⟩)) |
50 | 49 | anbi2d 630 |
. . 3
⊢ (𝑔 = 𝐺 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩))) |
51 | 48 | breq2d 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩)) |
52 | | opeq2 4875 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩) |
53 | 52 | breq2d 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)) |
54 | 51, 53 | anbi12d 632 |
. . 3
⊢ (𝑔 = 𝐺 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))) |
55 | | opeq1 4874 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⟨𝑔, ℎ⟩ = ⟨𝐺, ℎ⟩) |
56 | 55 | breq2d 5161 |
. . . 4
⊢ (𝑔 = 𝐺 → (⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩)) |
57 | 56 | anbi2d 630 |
. . 3
⊢ (𝑔 = 𝐺 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩))) |
58 | 50, 54, 57 | 3anbi123d 1437 |
. 2
⊢ (𝑔 = 𝐺 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩)))) |
59 | | opeq2 4875 |
. . . . 5
⊢ (ℎ = 𝐻 → ⟨𝐸, ℎ⟩ = ⟨𝐸, 𝐻⟩) |
60 | 59 | breq2d 5161 |
. . . 4
⊢ (ℎ = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩)) |
61 | | opeq2 4875 |
. . . . 5
⊢ (ℎ = 𝐻 → ⟨𝐺, ℎ⟩ = ⟨𝐺, 𝐻⟩) |
62 | 61 | breq2d 5161 |
. . . 4
⊢ (ℎ = 𝐻 → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)) |
63 | 60, 62 | anbi12d 632 |
. . 3
⊢ (ℎ = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))) |
64 | 63 | 3anbi3d 1443 |
. 2
⊢ (ℎ = 𝐻 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ℎ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) |
65 | | fveq2 6892 |
. 2
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
66 | | df-ifs 35012 |
. 2
⊢
InnerFiveSeg = {⟨𝑝,
𝑞⟩ ∣
∃𝑛 ∈ ℕ
∃𝑎 ∈
(𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ℎ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ℎ⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ℎ⟩)))} |
67 | 9, 15, 26, 32, 41, 47, 58, 64, 65, 66 | br8 34726 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))) |