Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brifs Structured version   Visualization version   GIF version

Theorem brifs 36025
Description: Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013.)
Assertion
Ref Expression
brifs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))

Proof of Theorem brifs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4878 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
21breq2d 5160 . . . 4 (𝑎 = 𝐴 → (𝑏 Btwn ⟨𝑎, 𝑐⟩ ↔ 𝑏 Btwn ⟨𝐴, 𝑐⟩))
32anbi1d 631 . . 3 (𝑎 = 𝐴 → ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
41breq1d 5158 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩))
54anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
6 opeq1 4878 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
76breq1d 5158 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
87anbi1d 631 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)))
93, 5, 83anbi123d 1435 . 2 (𝑎 = 𝐴 → (((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩))))
10 breq1 5151 . . . 4 (𝑏 = 𝐵 → (𝑏 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝑐⟩))
1110anbi1d 631 . . 3 (𝑏 = 𝐵 → ((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
12 opeq1 4878 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
1312breq1d 5158 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩))
1413anbi2d 630 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩)))
1511, 143anbi12d 1436 . 2 (𝑏 = 𝐵 → (((𝑏 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩))))
16 opeq2 4879 . . . . 5 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1716breq2d 5160 . . . 4 (𝑐 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ↔ 𝐵 Btwn ⟨𝐴, 𝐶⟩))
1817anbi1d 631 . . 3 (𝑐 = 𝐶 → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩)))
1916breq1d 5158 . . . 4 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩))
20 opeq2 4879 . . . . 5 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
2120breq1d 5158 . . . 4 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩))
2219, 21anbi12d 632 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
23 opeq1 4878 . . . . 5 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
2423breq1d 5158 . . . 4 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩))
2524anbi2d 630 . . 3 (𝑐 = 𝐶 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩)))
2618, 22, 253anbi123d 1435 . 2 (𝑐 = 𝐶 → (((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩))))
27 opeq2 4879 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
2827breq1d 5158 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
29 opeq2 4879 . . . . 5 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
3029breq1d 5158 . . . 4 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))
3128, 30anbi12d 632 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)))
32313anbi3d 1441 . 2 (𝑑 = 𝐷 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
33 opeq1 4878 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, 𝑔⟩ = ⟨𝐸, 𝑔⟩)
3433breq2d 5160 . . . 4 (𝑒 = 𝐸 → (𝑓 Btwn ⟨𝑒, 𝑔⟩ ↔ 𝑓 Btwn ⟨𝐸, 𝑔⟩))
3534anbi2d 630 . . 3 (𝑒 = 𝐸 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩)))
3633breq2d 5160 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩))
3736anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩)))
38 opeq1 4878 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
3938breq2d 5160 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
4039anbi1d 631 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)))
4135, 37, 403anbi123d 1435 . 2 (𝑒 = 𝐸 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
42 breq1 5151 . . . 4 (𝑓 = 𝐹 → (𝑓 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝑔⟩))
4342anbi2d 630 . . 3 (𝑓 = 𝐹 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩)))
44 opeq1 4878 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
4544breq2d 5160 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩))
4645anbi2d 630 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩)))
4743, 463anbi12d 1436 . 2 (𝑓 = 𝐹 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑓 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩))))
48 opeq2 4879 . . . . 5 (𝑔 = 𝐺 → ⟨𝐸, 𝑔⟩ = ⟨𝐸, 𝐺⟩)
4948breq2d 5160 . . . 4 (𝑔 = 𝐺 → (𝐹 Btwn ⟨𝐸, 𝑔⟩ ↔ 𝐹 Btwn ⟨𝐸, 𝐺⟩))
5049anbi2d 630 . . 3 (𝑔 = 𝐺 → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ↔ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩)))
5148breq2d 5160 . . . 4 (𝑔 = 𝐺 → (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩))
52 opeq2 4879 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
5352breq2d 5160 . . . 4 (𝑔 = 𝐺 → (⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩))
5451, 53anbi12d 632 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ↔ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩)))
55 opeq1 4878 . . . . 5 (𝑔 = 𝐺 → ⟨𝑔, ⟩ = ⟨𝐺, ⟩)
5655breq2d 5160 . . . 4 (𝑔 = 𝐺 → (⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩))
5756anbi2d 630 . . 3 (𝑔 = 𝐺 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩)))
5850, 54, 573anbi123d 1435 . 2 (𝑔 = 𝐺 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝑔⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝑔⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝑔⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝑔, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩))))
59 opeq2 4879 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
6059breq2d 5160 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
61 opeq2 4879 . . . . 5 ( = 𝐻 → ⟨𝐺, ⟩ = ⟨𝐺, 𝐻⟩)
6261breq2d 5160 . . . 4 ( = 𝐻 → (⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))
6360, 62anbi12d 632 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩)))
64633anbi3d 1441 . 2 ( = 𝐻 → (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, ⟩)) ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
65 fveq2 6907 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
66 df-ifs 36022 . 2 InnerFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑓 Btwn ⟨𝑒, 𝑔⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑒, 𝑔⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑓, 𝑔⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑔, ⟩)))}
679, 15, 26, 32, 41, 47, 58, 64, 65, 66br8 35736 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ InnerFiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐹 Btwn ⟨𝐸, 𝐺⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐸, 𝐺⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐹, 𝐺⟩) ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐺, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148  cfv 6563  cn 12264  𝔼cee 28918   Btwn cbtwn 28919  Cgrccgr 28920   InnerFiveSeg cifs 36017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-iota 6516  df-fv 6571  df-ifs 36022
This theorem is referenced by:  ifscgr  36026  cgrsub  36027  btwnxfr  36038  brifs2  36060  btwnconn1lem6  36074
  Copyright terms: Public domain W3C validator