Step | Hyp | Ref
| Expression |
1 | | breq1 5152 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑎 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝑏, 𝑐⟩)) |
2 | | opeq1 4874 |
. . . 4
⊢ (𝑎 = 𝐴 → ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝑏, 𝑐⟩⟩) |
3 | 2 | breq1d 5159 |
. . 3
⊢ (𝑎 = 𝐴 → (⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩)) |
4 | | opeq1 4874 |
. . . . 5
⊢ (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩) |
5 | 4 | breq1d 5159 |
. . . 4
⊢ (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩)) |
6 | 5 | anbi1d 631 |
. . 3
⊢ (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩))) |
7 | 1, 3, 6 | 3anbi123d 1437 |
. 2
⊢ (𝑎 = 𝐴 → ((𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩)))) |
8 | | opeq1 4874 |
. . . 4
⊢ (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩) |
9 | 8 | breq2d 5161 |
. . 3
⊢ (𝑏 = 𝐵 → (𝐴 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝑐⟩)) |
10 | 8 | opeq2d 4881 |
. . . 4
⊢ (𝑏 = 𝐵 → ⟨𝐴, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝑐⟩⟩) |
11 | 10 | breq1d 5159 |
. . 3
⊢ (𝑏 = 𝐵 → (⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩)) |
12 | | opeq1 4874 |
. . . . 5
⊢ (𝑏 = 𝐵 → ⟨𝑏, 𝑑⟩ = ⟨𝐵, 𝑑⟩) |
13 | 12 | breq1d 5159 |
. . . 4
⊢ (𝑏 = 𝐵 → (⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩ ↔ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩)) |
14 | 13 | anbi2d 630 |
. . 3
⊢ (𝑏 = 𝐵 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩))) |
15 | 9, 11, 14 | 3anbi123d 1437 |
. 2
⊢ (𝑏 = 𝐵 → ((𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩)))) |
16 | | opeq2 4875 |
. . . 4
⊢ (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩) |
17 | 16 | breq2d 5161 |
. . 3
⊢ (𝑐 = 𝐶 → (𝐴 Colinear ⟨𝐵, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝐶⟩)) |
18 | 16 | opeq2d 4881 |
. . . 4
⊢ (𝑐 = 𝐶 → ⟨𝐴, ⟨𝐵, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝐶⟩⟩) |
19 | 18 | breq1d 5159 |
. . 3
⊢ (𝑐 = 𝐶 → (⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩)) |
20 | 17, 19 | 3anbi12d 1438 |
. 2
⊢ (𝑐 = 𝐶 → ((𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩)))) |
21 | | opeq2 4875 |
. . . . 5
⊢ (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩) |
22 | 21 | breq1d 5159 |
. . . 4
⊢ (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩)) |
23 | | opeq2 4875 |
. . . . 5
⊢ (𝑑 = 𝐷 → ⟨𝐵, 𝑑⟩ = ⟨𝐵, 𝐷⟩) |
24 | 23 | breq1d 5159 |
. . . 4
⊢ (𝑑 = 𝐷 → (⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩)) |
25 | 22, 24 | anbi12d 632 |
. . 3
⊢ (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩))) |
26 | 25 | 3anbi3d 1443 |
. 2
⊢ (𝑑 = 𝐷 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩)))) |
27 | | opeq1 4874 |
. . . 4
⊢ (𝑒 = 𝐸 → ⟨𝑒, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝑓, 𝑔⟩⟩) |
28 | 27 | breq2d 5161 |
. . 3
⊢ (𝑒 = 𝐸 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩)) |
29 | | opeq1 4874 |
. . . . 5
⊢ (𝑒 = 𝐸 → ⟨𝑒, ℎ⟩ = ⟨𝐸, ℎ⟩) |
30 | 29 | breq2d 5161 |
. . . 4
⊢ (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩)) |
31 | 30 | anbi1d 631 |
. . 3
⊢ (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩))) |
32 | 28, 31 | 3anbi23d 1440 |
. 2
⊢ (𝑒 = 𝐸 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩)))) |
33 | | opeq1 4874 |
. . . . 5
⊢ (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩) |
34 | 33 | opeq2d 4881 |
. . . 4
⊢ (𝑓 = 𝐹 → ⟨𝐸, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝑔⟩⟩) |
35 | 34 | breq2d 5161 |
. . 3
⊢ (𝑓 = 𝐹 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩)) |
36 | | opeq1 4874 |
. . . . 5
⊢ (𝑓 = 𝐹 → ⟨𝑓, ℎ⟩ = ⟨𝐹, ℎ⟩) |
37 | 36 | breq2d 5161 |
. . . 4
⊢ (𝑓 = 𝐹 → (⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩)) |
38 | 37 | anbi2d 630 |
. . 3
⊢ (𝑓 = 𝐹 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩))) |
39 | 35, 38 | 3anbi23d 1440 |
. 2
⊢ (𝑓 = 𝐹 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩)))) |
40 | | opeq2 4875 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩) |
41 | 40 | opeq2d 4881 |
. . . 4
⊢ (𝑔 = 𝐺 → ⟨𝐸, ⟨𝐹, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝐺⟩⟩) |
42 | 41 | breq2d 5161 |
. . 3
⊢ (𝑔 = 𝐺 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩)) |
43 | 42 | 3anbi2d 1442 |
. 2
⊢ (𝑔 = 𝐺 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩)))) |
44 | | opeq2 4875 |
. . . . 5
⊢ (ℎ = 𝐻 → ⟨𝐸, ℎ⟩ = ⟨𝐸, 𝐻⟩) |
45 | 44 | breq2d 5161 |
. . . 4
⊢ (ℎ = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩)) |
46 | | opeq2 4875 |
. . . . 5
⊢ (ℎ = 𝐻 → ⟨𝐹, ℎ⟩ = ⟨𝐹, 𝐻⟩) |
47 | 46 | breq2d 5161 |
. . . 4
⊢ (ℎ = 𝐻 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)) |
48 | 45, 47 | anbi12d 632 |
. . 3
⊢ (ℎ = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))) |
49 | 48 | 3anbi3d 1443 |
. 2
⊢ (ℎ = 𝐻 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ℎ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ℎ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))) |
50 | | fveq2 6892 |
. 2
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
51 | | df-fs 35014 |
. 2
⊢ FiveSeg
= {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ℎ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ℎ⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ℎ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ℎ⟩)))} |
52 | 7, 15, 20, 26, 32, 39, 43, 49, 50, 51 | br8 34726 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ FiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))) |