Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfs Structured version   Visualization version   GIF version

Theorem brfs 33150
Description: Binary relation form of the general five segment predicate. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
brfs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ FiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))

Proof of Theorem brfs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4965 . . 3 (𝑎 = 𝐴 → (𝑎 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝑏, 𝑐⟩))
2 opeq1 4710 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝑏, 𝑐⟩⟩)
32breq1d 4972 . . 3 (𝑎 = 𝐴 → (⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
4 opeq1 4710 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
54breq1d 4972 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
65anbi1d 629 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))
71, 3, 63anbi123d 1428 . 2 (𝑎 = 𝐴 → ((𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩))))
8 opeq1 4710 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq2d 4974 . . 3 (𝑏 = 𝐵 → (𝐴 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝑐⟩))
108opeq2d 4717 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝑐⟩⟩)
1110breq1d 4972 . . 3 (𝑏 = 𝐵 → (⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
12 opeq1 4710 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑑⟩ = ⟨𝐵, 𝑑⟩)
1312breq1d 4972 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))
1413anbi2d 628 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)))
159, 11, 143anbi123d 1428 . 2 (𝑏 = 𝐵 → ((𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
16 opeq2 4711 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1716breq2d 4974 . . 3 (𝑐 = 𝐶 → (𝐴 Colinear ⟨𝐵, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝐶⟩))
1816opeq2d 4717 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, ⟨𝐵, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝐶⟩⟩)
1918breq1d 4972 . . 3 (𝑐 = 𝐶 → (⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
2017, 193anbi12d 1429 . 2 (𝑐 = 𝐶 → ((𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
21 opeq2 4711 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
2221breq1d 4972 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
23 opeq2 4711 . . . . 5 (𝑑 = 𝐷 → ⟨𝐵, 𝑑⟩ = ⟨𝐵, 𝐷⟩)
2423breq1d 4972 . . . 4 (𝑑 = 𝐷 → (⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))
2522, 24anbi12d 630 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
26253anbi3d 1434 . 2 (𝑑 = 𝐷 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
27 opeq1 4710 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝑓, 𝑔⟩⟩)
2827breq2d 4974 . . 3 (𝑒 = 𝐸 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩))
29 opeq1 4710 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
3029breq2d 4974 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
3130anbi1d 629 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
3228, 313anbi23d 1431 . 2 (𝑒 = 𝐸 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
33 opeq1 4710 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
3433opeq2d 4717 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝑔⟩⟩)
3534breq2d 4974 . . 3 (𝑓 = 𝐹 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩))
36 opeq1 4710 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, ⟩ = ⟨𝐹, ⟩)
3736breq2d 4974 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))
3837anbi2d 628 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)))
3935, 383anbi23d 1431 . 2 (𝑓 = 𝐹 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
40 opeq2 4711 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
4140opeq2d 4717 . . . 4 (𝑔 = 𝐺 → ⟨𝐸, ⟨𝐹, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝐺⟩⟩)
4241breq2d 4974 . . 3 (𝑔 = 𝐺 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩))
43423anbi2d 1433 . 2 (𝑔 = 𝐺 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
44 opeq2 4711 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
4544breq2d 4974 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
46 opeq2 4711 . . . . 5 ( = 𝐻 → ⟨𝐹, ⟩ = ⟨𝐹, 𝐻⟩)
4746breq2d 4974 . . . 4 ( = 𝐻 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
4845, 47anbi12d 630 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
49483anbi3d 1434 . 2 ( = 𝐻 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
50 fveq2 6538 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
51 df-fs 33113 . 2 FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))}
527, 15, 20, 26, 32, 39, 43, 49, 50, 51br8 32601 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ FiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  cop 4478   class class class wbr 4962  cfv 6225  cn 11486  𝔼cee 26357  Cgrccgr 26359  Cgr3ccgr3 33107   Colinear ccolin 33108   FiveSeg cfs 33109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-iota 6189  df-fv 6233  df-fs 33113
This theorem is referenced by:  fscgr  33151  linecgr  33152
  Copyright terms: Public domain W3C validator