Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfs Structured version   Visualization version   GIF version

Theorem brfs 32507
Description: Binary relation form of the general five segment predicate. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
brfs (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ FiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))

Proof of Theorem brfs
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑝 𝑞 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4847 . . 3 (𝑎 = 𝐴 → (𝑎 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝑏, 𝑐⟩))
2 opeq1 4595 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝑏, 𝑐⟩⟩)
32breq1d 4854 . . 3 (𝑎 = 𝐴 → (⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
4 opeq1 4595 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, 𝑑⟩ = ⟨𝐴, 𝑑⟩)
54breq1d 4854 . . . 4 (𝑎 = 𝐴 → (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩))
65anbi1d 617 . . 3 (𝑎 = 𝐴 → ((⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))
71, 3, 63anbi123d 1553 . 2 (𝑎 = 𝐴 → ((𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩))))
8 opeq1 4595 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq2d 4856 . . 3 (𝑏 = 𝐵 → (𝐴 Colinear ⟨𝑏, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝑐⟩))
108opeq2d 4602 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, ⟨𝑏, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝑐⟩⟩)
1110breq1d 4854 . . 3 (𝑏 = 𝐵 → (⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
12 opeq1 4595 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, 𝑑⟩ = ⟨𝐵, 𝑑⟩)
1312breq1d 4854 . . . 4 (𝑏 = 𝐵 → (⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))
1413anbi2d 616 . . 3 (𝑏 = 𝐵 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)))
159, 11, 143anbi123d 1553 . 2 (𝑏 = 𝐵 → ((𝐴 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝐴, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
16 opeq2 4596 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1716breq2d 4856 . . 3 (𝑐 = 𝐶 → (𝐴 Colinear ⟨𝐵, 𝑐⟩ ↔ 𝐴 Colinear ⟨𝐵, 𝐶⟩))
1816opeq2d 4602 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, ⟨𝐵, 𝑐⟩⟩ = ⟨𝐴, ⟨𝐵, 𝐶⟩⟩)
1918breq1d 4854 . . 3 (𝑐 = 𝐶 → (⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩))
2017, 193anbi12d 1554 . 2 (𝑐 = 𝐶 → ((𝐴 Colinear ⟨𝐵, 𝑐⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩))))
21 opeq2 4596 . . . . 5 (𝑑 = 𝐷 → ⟨𝐴, 𝑑⟩ = ⟨𝐴, 𝐷⟩)
2221breq1d 4854 . . . 4 (𝑑 = 𝐷 → (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩))
23 opeq2 4596 . . . . 5 (𝑑 = 𝐷 → ⟨𝐵, 𝑑⟩ = ⟨𝐵, 𝐷⟩)
2423breq1d 4854 . . . 4 (𝑑 = 𝐷 → (⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))
2522, 24anbi12d 618 . . 3 (𝑑 = 𝐷 → ((⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
26253anbi3d 1559 . 2 (𝑑 = 𝐷 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
27 opeq1 4595 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝑓, 𝑔⟩⟩)
2827breq2d 4856 . . 3 (𝑒 = 𝐸 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩))
29 opeq1 4595 . . . . 5 (𝑒 = 𝐸 → ⟨𝑒, ⟩ = ⟨𝐸, ⟩)
3029breq2d 4856 . . . 4 (𝑒 = 𝐸 → (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩))
3130anbi1d 617 . . 3 (𝑒 = 𝐸 → ((⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)))
3228, 313anbi23d 1556 . 2 (𝑒 = 𝐸 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩))))
33 opeq1 4595 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, 𝑔⟩ = ⟨𝐹, 𝑔⟩)
3433opeq2d 4602 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, ⟨𝑓, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝑔⟩⟩)
3534breq2d 4856 . . 3 (𝑓 = 𝐹 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩))
36 opeq1 4595 . . . . 5 (𝑓 = 𝐹 → ⟨𝑓, ⟩ = ⟨𝐹, ⟩)
3736breq2d 4856 . . . 4 (𝑓 = 𝐹 → (⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))
3837anbi2d 616 . . 3 (𝑓 = 𝐹 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)))
3935, 383anbi23d 1556 . 2 (𝑓 = 𝐹 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝑓, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
40 opeq2 4596 . . . . 5 (𝑔 = 𝐺 → ⟨𝐹, 𝑔⟩ = ⟨𝐹, 𝐺⟩)
4140opeq2d 4602 . . . 4 (𝑔 = 𝐺 → ⟨𝐸, ⟨𝐹, 𝑔⟩⟩ = ⟨𝐸, ⟨𝐹, 𝐺⟩⟩)
4241breq2d 4856 . . 3 (𝑔 = 𝐺 → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ↔ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩))
43423anbi2d 1558 . 2 (𝑔 = 𝐺 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝑔⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩))))
44 opeq2 4596 . . . . 5 ( = 𝐻 → ⟨𝐸, ⟩ = ⟨𝐸, 𝐻⟩)
4544breq2d 4856 . . . 4 ( = 𝐻 → (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ↔ ⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩))
46 opeq2 4596 . . . . 5 ( = 𝐻 → ⟨𝐹, ⟩ = ⟨𝐹, 𝐻⟩)
4746breq2d 4856 . . . 4 ( = 𝐻 → (⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩ ↔ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))
4845, 47anbi12d 618 . . 3 ( = 𝐻 → ((⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩) ↔ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩)))
49483anbi3d 1559 . 2 ( = 𝐻 → ((𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, ⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, ⟩)) ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
50 fveq2 6408 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
51 df-fs 32470 . 2 FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)∃𝑔 ∈ (𝔼‘𝑛)∃ ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑒, 𝑓⟩, ⟨𝑔, ⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑒, ⟨𝑓, 𝑔⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑒, ⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑓, ⟩)))}
527, 15, 20, 26, 32, 39, 43, 49, 50, 51br8 31968 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩ FiveSeg ⟨⟨𝐸, 𝐹⟩, ⟨𝐺, 𝐻⟩⟩ ↔ (𝐴 Colinear ⟨𝐵, 𝐶⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐸, ⟨𝐹, 𝐺⟩⟩ ∧ (⟨𝐴, 𝐷⟩Cgr⟨𝐸, 𝐻⟩ ∧ ⟨𝐵, 𝐷⟩Cgr⟨𝐹, 𝐻⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  cop 4376   class class class wbr 4844  cfv 6101  cn 11305  𝔼cee 25982  Cgrccgr 25984  Cgr3ccgr3 32464   Colinear ccolin 32465   FiveSeg cfs 32466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-iota 6064  df-fv 6109  df-fs 32470
This theorem is referenced by:  fscgr  32508  linecgr  32509
  Copyright terms: Public domain W3C validator