Detailed syntax breakdown of Definition df-fuc
| Step | Hyp | Ref
| Expression |
| 1 | | cfuc 17990 |
. 2
class
FuncCat |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | vu |
. . 3
setvar 𝑢 |
| 4 | | ccat 17707 |
. . 3
class
Cat |
| 5 | | cnx 17230 |
. . . . . 6
class
ndx |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘ndx) |
| 8 | 2 | cv 1539 |
. . . . . 6
class 𝑡 |
| 9 | 3 | cv 1539 |
. . . . . 6
class 𝑢 |
| 10 | | cfunc 17899 |
. . . . . 6
class
Func |
| 11 | 8, 9, 10 | co 7431 |
. . . . 5
class (𝑡 Func 𝑢) |
| 12 | 7, 11 | cop 4632 |
. . . 4
class
〈(Base‘ndx), (𝑡 Func 𝑢)〉 |
| 13 | | chom 17308 |
. . . . . 6
class
Hom |
| 14 | 5, 13 | cfv 6561 |
. . . . 5
class (Hom
‘ndx) |
| 15 | | cnat 17989 |
. . . . . 6
class
Nat |
| 16 | 8, 9, 15 | co 7431 |
. . . . 5
class (𝑡 Nat 𝑢) |
| 17 | 14, 16 | cop 4632 |
. . . 4
class
〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉 |
| 18 | | cco 17309 |
. . . . . 6
class
comp |
| 19 | 5, 18 | cfv 6561 |
. . . . 5
class
(comp‘ndx) |
| 20 | | vv |
. . . . . 6
setvar 𝑣 |
| 21 | | vh |
. . . . . 6
setvar ℎ |
| 22 | 11, 11 | cxp 5683 |
. . . . . 6
class ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)) |
| 23 | | vf |
. . . . . . 7
setvar 𝑓 |
| 24 | 20 | cv 1539 |
. . . . . . . 8
class 𝑣 |
| 25 | | c1st 8012 |
. . . . . . . 8
class
1st |
| 26 | 24, 25 | cfv 6561 |
. . . . . . 7
class
(1st ‘𝑣) |
| 27 | | vg |
. . . . . . . 8
setvar 𝑔 |
| 28 | | c2nd 8013 |
. . . . . . . . 9
class
2nd |
| 29 | 24, 28 | cfv 6561 |
. . . . . . . 8
class
(2nd ‘𝑣) |
| 30 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 31 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 32 | 27 | cv 1539 |
. . . . . . . . . 10
class 𝑔 |
| 33 | 21 | cv 1539 |
. . . . . . . . . 10
class ℎ |
| 34 | 32, 33, 16 | co 7431 |
. . . . . . . . 9
class (𝑔(𝑡 Nat 𝑢)ℎ) |
| 35 | 23 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 36 | 35, 32, 16 | co 7431 |
. . . . . . . . 9
class (𝑓(𝑡 Nat 𝑢)𝑔) |
| 37 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 38 | 8, 6 | cfv 6561 |
. . . . . . . . . 10
class
(Base‘𝑡) |
| 39 | 37 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 40 | 30 | cv 1539 |
. . . . . . . . . . . 12
class 𝑏 |
| 41 | 39, 40 | cfv 6561 |
. . . . . . . . . . 11
class (𝑏‘𝑥) |
| 42 | 31 | cv 1539 |
. . . . . . . . . . . 12
class 𝑎 |
| 43 | 39, 42 | cfv 6561 |
. . . . . . . . . . 11
class (𝑎‘𝑥) |
| 44 | 35, 25 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑓) |
| 45 | 39, 44 | cfv 6561 |
. . . . . . . . . . . . 13
class
((1st ‘𝑓)‘𝑥) |
| 46 | 32, 25 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑔) |
| 47 | 39, 46 | cfv 6561 |
. . . . . . . . . . . . 13
class
((1st ‘𝑔)‘𝑥) |
| 48 | 45, 47 | cop 4632 |
. . . . . . . . . . . 12
class
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 |
| 49 | 33, 25 | cfv 6561 |
. . . . . . . . . . . . 13
class
(1st ‘ℎ) |
| 50 | 39, 49 | cfv 6561 |
. . . . . . . . . . . 12
class
((1st ‘ℎ)‘𝑥) |
| 51 | 9, 18 | cfv 6561 |
. . . . . . . . . . . 12
class
(comp‘𝑢) |
| 52 | 48, 50, 51 | co 7431 |
. . . . . . . . . . 11
class
(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥)) |
| 53 | 41, 43, 52 | co 7431 |
. . . . . . . . . 10
class ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)) |
| 54 | 37, 38, 53 | cmpt 5225 |
. . . . . . . . 9
class (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))) |
| 55 | 30, 31, 34, 36, 54 | cmpo 7433 |
. . . . . . . 8
class (𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 56 | 27, 29, 55 | csb 3899 |
. . . . . . 7
class
⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 57 | 23, 26, 56 | csb 3899 |
. . . . . 6
class
⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 58 | 20, 21, 22, 11, 57 | cmpo 7433 |
. . . . 5
class (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 59 | 19, 58 | cop 4632 |
. . . 4
class
〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉 |
| 60 | 12, 17, 59 | ctp 4630 |
. . 3
class
{〈(Base‘ndx), (𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} |
| 61 | 2, 3, 4, 4, 60 | cmpo 7433 |
. 2
class (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈(Base‘ndx),
(𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 62 | 1, 61 | wceq 1540 |
1
wff FuncCat =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦
{〈(Base‘ndx), (𝑡
Func 𝑢)〉, 〈(Hom
‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx),
(𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |