Detailed syntax breakdown of Definition df-fuc
Step | Hyp | Ref
| Expression |
1 | | cfuc 17658 |
. 2
class
FuncCat |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | vu |
. . 3
setvar 𝑢 |
4 | | ccat 17373 |
. . 3
class
Cat |
5 | | cnx 16894 |
. . . . . 6
class
ndx |
6 | | cbs 16912 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6433 |
. . . . 5
class
(Base‘ndx) |
8 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
9 | 3 | cv 1538 |
. . . . . 6
class 𝑢 |
10 | | cfunc 17569 |
. . . . . 6
class
Func |
11 | 8, 9, 10 | co 7275 |
. . . . 5
class (𝑡 Func 𝑢) |
12 | 7, 11 | cop 4567 |
. . . 4
class
〈(Base‘ndx), (𝑡 Func 𝑢)〉 |
13 | | chom 16973 |
. . . . . 6
class
Hom |
14 | 5, 13 | cfv 6433 |
. . . . 5
class (Hom
‘ndx) |
15 | | cnat 17657 |
. . . . . 6
class
Nat |
16 | 8, 9, 15 | co 7275 |
. . . . 5
class (𝑡 Nat 𝑢) |
17 | 14, 16 | cop 4567 |
. . . 4
class
〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉 |
18 | | cco 16974 |
. . . . . 6
class
comp |
19 | 5, 18 | cfv 6433 |
. . . . 5
class
(comp‘ndx) |
20 | | vv |
. . . . . 6
setvar 𝑣 |
21 | | vh |
. . . . . 6
setvar ℎ |
22 | 11, 11 | cxp 5587 |
. . . . . 6
class ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)) |
23 | | vf |
. . . . . . 7
setvar 𝑓 |
24 | 20 | cv 1538 |
. . . . . . . 8
class 𝑣 |
25 | | c1st 7829 |
. . . . . . . 8
class
1st |
26 | 24, 25 | cfv 6433 |
. . . . . . 7
class
(1st ‘𝑣) |
27 | | vg |
. . . . . . . 8
setvar 𝑔 |
28 | | c2nd 7830 |
. . . . . . . . 9
class
2nd |
29 | 24, 28 | cfv 6433 |
. . . . . . . 8
class
(2nd ‘𝑣) |
30 | | vb |
. . . . . . . . 9
setvar 𝑏 |
31 | | va |
. . . . . . . . 9
setvar 𝑎 |
32 | 27 | cv 1538 |
. . . . . . . . . 10
class 𝑔 |
33 | 21 | cv 1538 |
. . . . . . . . . 10
class ℎ |
34 | 32, 33, 16 | co 7275 |
. . . . . . . . 9
class (𝑔(𝑡 Nat 𝑢)ℎ) |
35 | 23 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
36 | 35, 32, 16 | co 7275 |
. . . . . . . . 9
class (𝑓(𝑡 Nat 𝑢)𝑔) |
37 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
38 | 8, 6 | cfv 6433 |
. . . . . . . . . 10
class
(Base‘𝑡) |
39 | 37 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
40 | 30 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
41 | 39, 40 | cfv 6433 |
. . . . . . . . . . 11
class (𝑏‘𝑥) |
42 | 31 | cv 1538 |
. . . . . . . . . . . 12
class 𝑎 |
43 | 39, 42 | cfv 6433 |
. . . . . . . . . . 11
class (𝑎‘𝑥) |
44 | 35, 25 | cfv 6433 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑓) |
45 | 39, 44 | cfv 6433 |
. . . . . . . . . . . . 13
class
((1st ‘𝑓)‘𝑥) |
46 | 32, 25 | cfv 6433 |
. . . . . . . . . . . . . 14
class
(1st ‘𝑔) |
47 | 39, 46 | cfv 6433 |
. . . . . . . . . . . . 13
class
((1st ‘𝑔)‘𝑥) |
48 | 45, 47 | cop 4567 |
. . . . . . . . . . . 12
class
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 |
49 | 33, 25 | cfv 6433 |
. . . . . . . . . . . . 13
class
(1st ‘ℎ) |
50 | 39, 49 | cfv 6433 |
. . . . . . . . . . . 12
class
((1st ‘ℎ)‘𝑥) |
51 | 9, 18 | cfv 6433 |
. . . . . . . . . . . 12
class
(comp‘𝑢) |
52 | 48, 50, 51 | co 7275 |
. . . . . . . . . . 11
class
(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥)) |
53 | 41, 43, 52 | co 7275 |
. . . . . . . . . 10
class ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)) |
54 | 37, 38, 53 | cmpt 5157 |
. . . . . . . . 9
class (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))) |
55 | 30, 31, 34, 36, 54 | cmpo 7277 |
. . . . . . . 8
class (𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
56 | 27, 29, 55 | csb 3832 |
. . . . . . 7
class
⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
57 | 23, 26, 56 | csb 3832 |
. . . . . 6
class
⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
58 | 20, 21, 22, 11, 57 | cmpo 7277 |
. . . . 5
class (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
59 | 19, 58 | cop 4567 |
. . . 4
class
〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉 |
60 | 12, 17, 59 | ctp 4565 |
. . 3
class
{〈(Base‘ndx), (𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} |
61 | 2, 3, 4, 4, 60 | cmpo 7277 |
. 2
class (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈(Base‘ndx),
(𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
62 | 1, 61 | wceq 1539 |
1
wff FuncCat =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦
{〈(Base‘ndx), (𝑡
Func 𝑢)〉, 〈(Hom
‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx),
(𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |