Detailed syntax breakdown of Definition df-nat
| Step | Hyp | Ref
| Expression |
| 1 | | cnat 17989 |
. 2
class
Nat |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | vu |
. . 3
setvar 𝑢 |
| 4 | | ccat 17707 |
. . 3
class
Cat |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | | vg |
. . . 4
setvar 𝑔 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑡 |
| 8 | 3 | cv 1539 |
. . . . 5
class 𝑢 |
| 9 | | cfunc 17899 |
. . . . 5
class
Func |
| 10 | 7, 8, 9 | co 7431 |
. . . 4
class (𝑡 Func 𝑢) |
| 11 | | vr |
. . . . 5
setvar 𝑟 |
| 12 | 5 | cv 1539 |
. . . . . 6
class 𝑓 |
| 13 | | c1st 8012 |
. . . . . 6
class
1st |
| 14 | 12, 13 | cfv 6561 |
. . . . 5
class
(1st ‘𝑓) |
| 15 | | vs |
. . . . . 6
setvar 𝑠 |
| 16 | 6 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 17 | 16, 13 | cfv 6561 |
. . . . . 6
class
(1st ‘𝑔) |
| 18 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑦 |
| 20 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑎 |
| 22 | 19, 21 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑎‘𝑦) |
| 23 | | vh |
. . . . . . . . . . . . . 14
setvar ℎ |
| 24 | 23 | cv 1539 |
. . . . . . . . . . . . 13
class ℎ |
| 25 | | vx |
. . . . . . . . . . . . . . 15
setvar 𝑥 |
| 26 | 25 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑥 |
| 27 | | c2nd 8013 |
. . . . . . . . . . . . . . 15
class
2nd |
| 28 | 12, 27 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑓) |
| 29 | 26, 19, 28 | co 7431 |
. . . . . . . . . . . . 13
class (𝑥(2nd ‘𝑓)𝑦) |
| 30 | 24, 29 | cfv 6561 |
. . . . . . . . . . . 12
class ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) |
| 31 | 11 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑟 |
| 32 | 26, 31 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑟‘𝑥) |
| 33 | 19, 31 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑟‘𝑦) |
| 34 | 32, 33 | cop 4632 |
. . . . . . . . . . . . 13
class
〈(𝑟‘𝑥), (𝑟‘𝑦)〉 |
| 35 | 15 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑠 |
| 36 | 19, 35 | cfv 6561 |
. . . . . . . . . . . . 13
class (𝑠‘𝑦) |
| 37 | | cco 17309 |
. . . . . . . . . . . . . 14
class
comp |
| 38 | 8, 37 | cfv 6561 |
. . . . . . . . . . . . 13
class
(comp‘𝑢) |
| 39 | 34, 36, 38 | co 7431 |
. . . . . . . . . . . 12
class
(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦)) |
| 40 | 22, 30, 39 | co 7431 |
. . . . . . . . . . 11
class ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) |
| 41 | 16, 27 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑔) |
| 42 | 26, 19, 41 | co 7431 |
. . . . . . . . . . . . 13
class (𝑥(2nd ‘𝑔)𝑦) |
| 43 | 24, 42 | cfv 6561 |
. . . . . . . . . . . 12
class ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) |
| 44 | 26, 21 | cfv 6561 |
. . . . . . . . . . . 12
class (𝑎‘𝑥) |
| 45 | 26, 35 | cfv 6561 |
. . . . . . . . . . . . . 14
class (𝑠‘𝑥) |
| 46 | 32, 45 | cop 4632 |
. . . . . . . . . . . . 13
class
〈(𝑟‘𝑥), (𝑠‘𝑥)〉 |
| 47 | 46, 36, 38 | co 7431 |
. . . . . . . . . . . 12
class
(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦)) |
| 48 | 43, 44, 47 | co 7431 |
. . . . . . . . . . 11
class (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
| 49 | 40, 48 | wceq 1540 |
. . . . . . . . . 10
wff ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
| 50 | | chom 17308 |
. . . . . . . . . . . 12
class
Hom |
| 51 | 7, 50 | cfv 6561 |
. . . . . . . . . . 11
class (Hom
‘𝑡) |
| 52 | 26, 19, 51 | co 7431 |
. . . . . . . . . 10
class (𝑥(Hom ‘𝑡)𝑦) |
| 53 | 49, 23, 52 | wral 3061 |
. . . . . . . . 9
wff
∀ℎ ∈
(𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
| 54 | | cbs 17247 |
. . . . . . . . . 10
class
Base |
| 55 | 7, 54 | cfv 6561 |
. . . . . . . . 9
class
(Base‘𝑡) |
| 56 | 53, 18, 55 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
(Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
| 57 | 56, 25, 55 | wral 3061 |
. . . . . . 7
wff
∀𝑥 ∈
(Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
| 58 | 8, 50 | cfv 6561 |
. . . . . . . . 9
class (Hom
‘𝑢) |
| 59 | 32, 45, 58 | co 7431 |
. . . . . . . 8
class ((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) |
| 60 | 25, 55, 59 | cixp 8937 |
. . . . . . 7
class X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) |
| 61 | 57, 20, 60 | crab 3436 |
. . . . . 6
class {𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
| 62 | 15, 17, 61 | csb 3899 |
. . . . 5
class
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
| 63 | 11, 14, 62 | csb 3899 |
. . . 4
class
⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
| 64 | 5, 6, 10, 10, 63 | cmpo 7433 |
. . 3
class (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 65 | 2, 3, 4, 4, 64 | cmpo 7433 |
. 2
class (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |
| 66 | 1, 65 | wceq 1540 |
1
wff Nat =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |