Detailed syntax breakdown of Definition df-nat
Step | Hyp | Ref
| Expression |
1 | | cnat 17657 |
. 2
class
Nat |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | vu |
. . 3
setvar 𝑢 |
4 | | ccat 17373 |
. . 3
class
Cat |
5 | | vf |
. . . 4
setvar 𝑓 |
6 | | vg |
. . . 4
setvar 𝑔 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
8 | 3 | cv 1538 |
. . . . 5
class 𝑢 |
9 | | cfunc 17569 |
. . . . 5
class
Func |
10 | 7, 8, 9 | co 7275 |
. . . 4
class (𝑡 Func 𝑢) |
11 | | vr |
. . . . 5
setvar 𝑟 |
12 | 5 | cv 1538 |
. . . . . 6
class 𝑓 |
13 | | c1st 7829 |
. . . . . 6
class
1st |
14 | 12, 13 | cfv 6433 |
. . . . 5
class
(1st ‘𝑓) |
15 | | vs |
. . . . . 6
setvar 𝑠 |
16 | 6 | cv 1538 |
. . . . . . 7
class 𝑔 |
17 | 16, 13 | cfv 6433 |
. . . . . 6
class
(1st ‘𝑔) |
18 | | vy |
. . . . . . . . . . . . . 14
setvar 𝑦 |
19 | 18 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑦 |
20 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
21 | 20 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑎 |
22 | 19, 21 | cfv 6433 |
. . . . . . . . . . . 12
class (𝑎‘𝑦) |
23 | | vh |
. . . . . . . . . . . . . 14
setvar ℎ |
24 | 23 | cv 1538 |
. . . . . . . . . . . . 13
class ℎ |
25 | | vx |
. . . . . . . . . . . . . . 15
setvar 𝑥 |
26 | 25 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑥 |
27 | | c2nd 7830 |
. . . . . . . . . . . . . . 15
class
2nd |
28 | 12, 27 | cfv 6433 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑓) |
29 | 26, 19, 28 | co 7275 |
. . . . . . . . . . . . 13
class (𝑥(2nd ‘𝑓)𝑦) |
30 | 24, 29 | cfv 6433 |
. . . . . . . . . . . 12
class ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) |
31 | 11 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑟 |
32 | 26, 31 | cfv 6433 |
. . . . . . . . . . . . . 14
class (𝑟‘𝑥) |
33 | 19, 31 | cfv 6433 |
. . . . . . . . . . . . . 14
class (𝑟‘𝑦) |
34 | 32, 33 | cop 4567 |
. . . . . . . . . . . . 13
class
〈(𝑟‘𝑥), (𝑟‘𝑦)〉 |
35 | 15 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑠 |
36 | 19, 35 | cfv 6433 |
. . . . . . . . . . . . 13
class (𝑠‘𝑦) |
37 | | cco 16974 |
. . . . . . . . . . . . . 14
class
comp |
38 | 8, 37 | cfv 6433 |
. . . . . . . . . . . . 13
class
(comp‘𝑢) |
39 | 34, 36, 38 | co 7275 |
. . . . . . . . . . . 12
class
(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦)) |
40 | 22, 30, 39 | co 7275 |
. . . . . . . . . . 11
class ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) |
41 | 16, 27 | cfv 6433 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑔) |
42 | 26, 19, 41 | co 7275 |
. . . . . . . . . . . . 13
class (𝑥(2nd ‘𝑔)𝑦) |
43 | 24, 42 | cfv 6433 |
. . . . . . . . . . . 12
class ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) |
44 | 26, 21 | cfv 6433 |
. . . . . . . . . . . 12
class (𝑎‘𝑥) |
45 | 26, 35 | cfv 6433 |
. . . . . . . . . . . . . 14
class (𝑠‘𝑥) |
46 | 32, 45 | cop 4567 |
. . . . . . . . . . . . 13
class
〈(𝑟‘𝑥), (𝑠‘𝑥)〉 |
47 | 46, 36, 38 | co 7275 |
. . . . . . . . . . . 12
class
(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦)) |
48 | 43, 44, 47 | co 7275 |
. . . . . . . . . . 11
class (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
49 | 40, 48 | wceq 1539 |
. . . . . . . . . 10
wff ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
50 | | chom 16973 |
. . . . . . . . . . . 12
class
Hom |
51 | 7, 50 | cfv 6433 |
. . . . . . . . . . 11
class (Hom
‘𝑡) |
52 | 26, 19, 51 | co 7275 |
. . . . . . . . . 10
class (𝑥(Hom ‘𝑡)𝑦) |
53 | 49, 23, 52 | wral 3064 |
. . . . . . . . 9
wff
∀ℎ ∈
(𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
54 | | cbs 16912 |
. . . . . . . . . 10
class
Base |
55 | 7, 54 | cfv 6433 |
. . . . . . . . 9
class
(Base‘𝑡) |
56 | 53, 18, 55 | wral 3064 |
. . . . . . . 8
wff
∀𝑦 ∈
(Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
57 | 56, 25, 55 | wral 3064 |
. . . . . . 7
wff
∀𝑥 ∈
(Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥)) |
58 | 8, 50 | cfv 6433 |
. . . . . . . . 9
class (Hom
‘𝑢) |
59 | 32, 45, 58 | co 7275 |
. . . . . . . 8
class ((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) |
60 | 25, 55, 59 | cixp 8685 |
. . . . . . 7
class X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) |
61 | 57, 20, 60 | crab 3068 |
. . . . . 6
class {𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
62 | 15, 17, 61 | csb 3832 |
. . . . 5
class
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
63 | 11, 14, 62 | csb 3832 |
. . . 4
class
⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))} |
64 | 5, 6, 10, 10, 63 | cmpo 7277 |
. . 3
class (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))}) |
65 | 2, 3, 4, 4, 64 | cmpo 7277 |
. 2
class (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |
66 | 1, 65 | wceq 1539 |
1
wff Nat =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |