Home | Metamath
Proof Explorer Theorem List (p. 180 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hofpropd 17901 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (HomF‘𝐶) = (HomF‘𝐷)) | ||
Theorem | yonpropd 17902 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Yoneda functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Yon‘𝐶) = (Yon‘𝐷)) | ||
Theorem | oppcyon 17903 | Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑌 = (〈𝑂, 𝐶〉 curryF 𝑀)) | ||
Theorem | oyoncl 17904 | The opposite Yoneda embedding is a functor from oppCat‘𝐶 to the functor category 𝐶 → SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝑄 = (𝐶 FuncCat 𝑆) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func 𝑄)) | ||
Theorem | oyon1cl 17905 | The opposite Yoneda embedding at an object of 𝐶 is a functor from 𝐶 to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) ∈ (𝐶 Func 𝑆)) | ||
Theorem | yonedalem1 17906 | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) | ||
Theorem | yonedalem21 17907 | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝑍)𝑋) = (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
Theorem | yonedalem3a 17908* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋))) | ||
Theorem | yonedalem4a 17909* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) | ||
Theorem | yonedalem4b 17910* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) | ||
Theorem | yonedalem4c 17911* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
Theorem | yonedalem22 17912 | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾) = (((𝑃(2nd ‘𝑌)𝑋)‘𝐾)(〈((1st ‘𝑌)‘𝑋), 𝐹〉(2nd ‘𝐻)〈((1st ‘𝑌)‘𝑃), 𝐺〉)𝐴)) | ||
Theorem | yonedalem3b 17913* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐺𝑀𝑃)(〈(𝐹(1st ‘𝑍)𝑋), (𝐺(1st ‘𝑍)𝑃)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾)) = ((𝐴(〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑃〉)𝐾)(〈(𝐹(1st ‘𝑍)𝑋), (𝐹(1st ‘𝐸)𝑋)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐹𝑀𝑋))) | ||
Theorem | yonedalem3 17914* | Lemma for yoneda 17917. (Contributed by Mario Carneiro, 28-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸)) | ||
Theorem | yonedainv 17915* | The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)𝑁) | ||
Theorem | yonffthlem 17916* | Lemma for yonffth 17918. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
Theorem | yoneda 17917* | The Yoneda Lemma. There is a natural isomorphism between the functors 𝑍 and 𝐸, where 𝑍(𝐹, 𝑋) is the natural transformations from Yon(𝑋) = Hom ( − , 𝑋) to 𝐹, and 𝐸(𝐹, 𝑋) = 𝐹(𝑋) is the evaluation functor. Here we need two universes to state the claim: the smaller universe 𝑈 is used for forming the functor category 𝑄 = 𝐶 op → SetCat(𝑈), which itself does not (necessarily) live in 𝑈 but instead is an element of the larger universe 𝑉. (If 𝑈 is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set 𝑈 = 𝑉 in this case.) (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Iso‘𝑅) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐼𝐸)) | ||
Theorem | yonffth 17918 | The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
Theorem | yoniso 17919* | If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.) |
⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐷 = (CatCat‘𝑉) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐸 = (𝑄 ↾s ran (1st ‘𝑌)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐼𝐸)) | ||
Syntax | codu 17920 | Class function defining dual orders. |
class ODual | ||
Definition | df-odu 17921 |
Define the dual of an ordered structure, which replaces the order
component of the structure with its reverse. See odubas 17925, oduleval 17923,
and oduleg 17924 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18128. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | ||
Theorem | oduval 17922 | Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) | ||
Theorem | oduleval 17923 | Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ ◡ ≤ = (le‘𝐷) | ||
Theorem | oduleg 17924 | Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) & ⊢ 𝐺 = (le‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝐺𝐵 ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | odubas 17925 | Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
Syntax | cproset 17926 | Extend class notation with the class of all prosets. |
class Proset | ||
Syntax | cdrs 17927 | Extend class notation with the class of all directed sets. |
class Dirset | ||
Definition | df-proset 17928* |
Define the class of preordered sets, or prosets. A proset is a set
equipped with a preorder, that is, a transitive and reflexive relation.
Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them). If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation. Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.) |
⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
Definition | df-drs 17929* |
Define the class of directed sets. A directed set is a nonempty
preordered set where every pair of elements have some upper bound. Note
that it is not required that there exist a least upper bound.
There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} | ||
Theorem | isprs 17930* | Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | prslem 17931 | Lemma for prsref 17932 and prstr 17933. (Contributed by Mario Carneiro, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
Theorem | prsref 17932 | "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
Theorem | prstr 17933 | "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) | ||
Theorem | isdrs 17934* | Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) | ||
Theorem | drsdir 17935* | Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) | ||
Theorem | drsprs 17936 | A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | ||
Theorem | drsbn0 17937 | The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) | ||
Theorem | drsdirfi 17938* | Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 17929 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑦) | ||
Theorem | isdrs2 17939* | Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑦)) | ||
Syntax | cpo 17940 | Extend class notation with the class of posets. |
class Poset | ||
Syntax | cplt 17941 | Extend class notation with less-than for posets. |
class lt | ||
Syntax | club 17942 | Extend class notation with poset least upper bound. |
class lub | ||
Syntax | cglb 17943 | Extend class notation with poset greatest lower bound. |
class glb | ||
Syntax | cjn 17944 | Extend class notation with poset join. |
class join | ||
Syntax | cmee 17945 | Extend class notation with poset meet. |
class meet | ||
Definition | df-poset 17946* |
Define the class of partially ordered sets (posets). A poset is a set
equipped with a partial order, that is, a binary relation which is
reflexive, antisymmetric, and transitive. Unlike a total order, in a
partial order there may be pairs of elements where neither precedes the
other. Definition of poset in [Crawley] p. 1. Note that
Crawley-Dilworth require that a poset base set be nonempty, but we
follow the convention of most authors who don't make this a requirement.
In our formalism of extensible structures, the base set of a poset 𝑓 is denoted by (Base‘𝑓) and its partial order by (le‘𝑓) (for "less than or equal to"). The quantifiers ∃𝑏∃𝑟 provide a notational shorthand to allow us to refer to the base and ordering relation as 𝑏 and 𝑟 in the definition rather than having to repeat (Base‘𝑓) and (le‘𝑓) throughout. These quantifiers can be eliminated with ceqsex2v 3473 and related theorems. (Contributed by NM, 18-Oct-2012.) |
⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} | ||
Theorem | ispos 17947* | The predicate "is a poset". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | ispos2 17948* |
A poset is an antisymmetric proset.
EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦))) | ||
Theorem | posprs 17949 | A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | ||
Theorem | posi 17950 | Lemma for poset properties. (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
Theorem | posref 17951 | A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
Theorem | posasymb 17952 | A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
Theorem | postr 17953 | A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
Theorem | 0pos 17954 | Technical lemma to simplify the statement of ipopos 18169. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 16818) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ ∅ ∈ Poset | ||
Theorem | 0posOLD 17955 | Obsolete proof of 0pos 17954 as of 13-Oct-2024. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∅ ∈ Poset | ||
Theorem | isposd 17956* | Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by AV, 26-Apr-2024.) |
⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ (𝜑 → 𝐾 ∈ Poset) | ||
Theorem | isposi 17957* | Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
⊢ 𝐾 ∈ V & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
Theorem | isposix 17958* | Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
Theorem | isposixOLD 17959* | Obsolete proof of isposix 17958 as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
Theorem | pospropd 17960* | Posethood is determined only by structure components and only by the value of the relation within the base set. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐿 ∈ Poset)) | ||
Theorem | odupos 17961 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) | ||
Theorem | oduposb 17962 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) | ||
Definition | df-plt 17963 | Define less-than ordering for posets and related structures. Unlike df-base 16841 and df-ple 16908, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | ||
Theorem | pltfval 17964 | Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) | ||
Theorem | pltval 17965 | Less-than relation. (df-pss 3902 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | ||
Theorem | pltle 17966 | "Less than" implies "less than or equal to". (pssss 4026 analog.) (Contributed by NM, 4-Dec-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) | ||
Theorem | pltne 17967 | The "less than" relation is not reflexive. (df-pss 3902 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) | ||
Theorem | pltirr 17968 | The "less than" relation is not reflexive. (pssirr 4031 analog.) (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) | ||
Theorem | pleval2i 17969 | One direction of pleval2 17970. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
Theorem | pleval2 17970 | "Less than or equal to" in terms of "less than". (sspss 4030 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
Theorem | pltnle 17971 | "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
Theorem | pltval3 17972 | Alternate expression for the "less than" relation. (dfpss3 4017 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) | ||
Theorem | pltnlt 17973 | The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) | ||
Theorem | pltn2lp 17974 | The less-than relation has no 2-cycle loops. (pssn2lp 4032 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) | ||
Theorem | plttr 17975 | The less-than relation is transitive. (psstr 4035 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | pltletr 17976 | Transitive law for chained "less than" and "less than or equal to". (psssstr 4037 analog.) (Contributed by NM, 2-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | plelttr 17977 | Transitive law for chained "less than or equal to" and "less than". (sspsstr 4036 analog.) (Contributed by NM, 2-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | pospo 17978 | Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
Definition | df-lub 17979* | Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) | ||
Definition | df-glb 17980* | Define the greatest lower bound (GLB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the GLB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) | ||
Definition | df-join 17981* | Define poset join. (Contributed by NM, 12-Sep-2011.) (Revised by Mario Carneiro, 3-Nov-2015.) |
⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) | ||
Definition | df-meet 17982* | Define poset meet. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 8-Sep-2018.) |
⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) | ||
Theorem | lubfval 17983* | Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
Theorem | lubdm 17984* | Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
Theorem | lubfun 17985 | The LUB is a function. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ Fun 𝑈 | ||
Theorem | lubeldm 17986* | Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
Theorem | lubelss 17987 | A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
Theorem | lubeu 17988* | Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
Theorem | lubval 17989* | Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | lubcl 17990 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) | ||
Theorem | lubprop 17991* | Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
Theorem | luble 17992 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) | ||
Theorem | lublecllem 17993* | Lemma for lublecl 17994 and lubid 17995. (Contributed by NM, 8-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) | ||
Theorem | lublecl 17994* | The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) | ||
Theorem | lubid 17995* | The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
Theorem | glbfval 17996* | Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
Theorem | glbdm 17997* | Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
Theorem | glbfun 17998 | The GLB is a function. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ Fun 𝐺 | ||
Theorem | glbeldm 17999* | Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
Theorem | glbelss 18000 | A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |