| Metamath
Proof Explorer Theorem List (p. 180 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fucinv 17901* | Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐼 = (Inv‘𝑄) & ⊢ 𝐽 = (Inv‘𝐷) ⇒ ⊢ (𝜑 → (𝑈(𝐹𝐼𝐺)𝑉 ↔ (𝑈 ∈ (𝐹𝑁𝐺) ∧ 𝑉 ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))(𝑉‘𝑥)))) | ||
| Theorem | invfuc 17902* | If 𝑉(𝑥) is an inverse to 𝑈(𝑥) for each 𝑥, and 𝑈 is a natural transformation, then 𝑉 is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐼 = (Inv‘𝑄) & ⊢ 𝐽 = (Inv‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ (𝐹𝑁𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈‘𝑥)(((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))𝑋) ⇒ ⊢ (𝜑 → 𝑈(𝐹𝐼𝐺)(𝑥 ∈ 𝐵 ↦ 𝑋)) | ||
| Theorem | fuciso 17903* | A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐼 = (Iso‘𝑄) & ⊢ 𝐽 = (Iso‘𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))))) | ||
| Theorem | natpropd 17904 | If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ Cat) & ⊢ (𝜑 → 𝐵 ∈ Cat) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) | ||
| Theorem | fucpropd 17905 | If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ Cat) & ⊢ (𝜑 → 𝐵 ∈ Cat) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷)) | ||
| Syntax | cinito 17906 | Extend class notation with the class of initial objects of a category. |
| class InitO | ||
| Syntax | ctermo 17907 | Extend class notation with the class of terminal objects of a category. |
| class TermO | ||
| Syntax | czeroo 17908 | Extend class notation with the class of zero objects of a category. |
| class ZeroO | ||
| Definition | df-inito 17909* | An object A is said to be an initial object provided that for each object B there is exactly one morphism from A to B. Definition 7.1 in [Adamek] p. 101, or definition in [Lang] p. 57 (called "a universally repelling object" there). See dfinito2 17928 and dfinito3 17930 for alternate definitions depending on df-termo 17910. See dfinito4 49474 for an alternate definition using the universal property. (Contributed by AV, 3-Apr-2020.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) | ||
| Definition | df-termo 17910* | An object A is called a terminal object provided that for each object B there is exactly one morphism from B to A. Definition 7.4 in [Adamek] p. 102, or definition in [Lang] p. 57 (called "a universally attracting object" there). See dftermo2 17929 and dftermo3 17931 for alternate definitions depending on df-inito 17909. See dftermo4 49475 for an alternate definition using the universal property. (Contributed by AV, 3-Apr-2020.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) | ||
| Definition | df-zeroo 17911 | An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of [Adamek] p. 103. (Contributed by AV, 3-Apr-2020.) |
| ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) | ||
| Theorem | initofn 17912 | InitO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ InitO Fn Cat | ||
| Theorem | termofn 17913 | TermO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ TermO Fn Cat | ||
| Theorem | zeroofn 17914 | ZeroO is a function on Cat. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ ZeroO Fn Cat | ||
| Theorem | initorcl 17915 | Reverse closure for an initial object: If a class has an initial object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| ⊢ (𝐼 ∈ (InitO‘𝐶) → 𝐶 ∈ Cat) | ||
| Theorem | termorcl 17916 | Reverse closure for a terminal object: If a class has a terminal object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| ⊢ (𝑇 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat) | ||
| Theorem | zeroorcl 17917 | Reverse closure for a zero object: If a class has a zero object, the class is a category. (Contributed by AV, 4-Apr-2020.) |
| ⊢ (𝑍 ∈ (ZeroO‘𝐶) → 𝐶 ∈ Cat) | ||
| Theorem | initoval 17918* | The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) | ||
| Theorem | termoval 17919* | The value of the terminal object function, i.e. the set of all terminal objects of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (TermO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) | ||
| Theorem | zerooval 17920 | The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) | ||
| Theorem | isinito 17921* | The predicate "is an initial object" of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝐼𝐻𝑏))) | ||
| Theorem | istermo 17922* | The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) | ||
| Theorem | iszeroo 17923 | The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) | ||
| Theorem | isinitoi 17924* | Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) | ||
| Theorem | istermoi 17925* | Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) | ||
| Theorem | initoid 17926 | For an initial object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 6-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}) | ||
| Theorem | termoid 17927 | For a terminal object, the identity arrow is the one and only morphism of the object to the object itself. (Contributed by AV, 18-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐻𝑂) = {((Id‘𝐶)‘𝑂)}) | ||
| Theorem | dfinito2 17928 | An initial object is a terminal object in the opposite category. An alternate definition of df-inito 17909 depending on df-termo 17910. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ (TermO‘(oppCat‘𝑐))) | ||
| Theorem | dftermo2 17929 | A terminal object is an initial object in the opposite category. An alternate definition of df-termo 17910 depending on df-inito 17909. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) | ||
| Theorem | dfinito3 17930 | An alternate definition of df-inito 17909 depending on df-termo 17910, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ InitO = (TermO ∘ (oppCat ↾ Cat)) | ||
| Theorem | dftermo3 17931 | An alternate definition of df-termo 17910 depending on df-inito 17909, without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024.) |
| ⊢ TermO = (InitO ∘ (oppCat ↾ Cat)) | ||
| Theorem | initoo 17932 | An initial object is an object. (Contributed by AV, 14-Apr-2020.) |
| ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) | ||
| Theorem | termoo 17933 | A terminal object is an object. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) | ||
| Theorem | iszeroi 17934 | Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.) |
| ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) | ||
| Theorem | 2initoinv 17935 | Morphisms between two initial objects are inverses. (Contributed by AV, 14-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) ⇒ ⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺) | ||
| Theorem | initoeu1 17936* | Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | ||
| Theorem | initoeu1w 17937 | Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of [Adamek] p. 102. (Contributed by AV, 6-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) ⇒ ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) | ||
| Theorem | initoeu2lem0 17938 | Lemma 0 for initoeu2 17941. (Contributed by AV, 9-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ ⚬ = (comp‘𝐶) ⇒ ⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)) | ||
| Theorem | initoeu2lem1 17939* | Lemma 1 for initoeu2 17941. (Contributed by AV, 9-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ ⚬ = (comp‘𝐶) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) | ||
| Theorem | initoeu2lem2 17940* | Lemma 2 for initoeu2 17941. (Contributed by AV, 10-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ ⚬ = (comp‘𝐶) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ∃!𝑔 𝑔 ∈ (𝐵𝐻𝐷))) | ||
| Theorem | initoeu2 17941 | Initial objects are essentially unique, if A is an initial object, then so is every object that is isomorphic to A. Proposition 7.3 (2) in [Adamek] p. 102. (Contributed by AV, 10-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) & ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) | ||
| Theorem | 2termoinv 17942 | Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) ⇒ ⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺) | ||
| Theorem | termoeu1 17943* | Terminal objects are essentially unique (strong form), i.e. there is a unique isomorphism between two terminal objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | ||
| Theorem | termoeu1w 17944 | Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) & ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) ⇒ ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) | ||
| Syntax | cdoma 17945 | Extend class notation to include the domain extractor for an arrow. |
| class doma | ||
| Syntax | ccoda 17946 | Extend class notation to include the codomain extractor for an arrow. |
| class coda | ||
| Syntax | carw 17947 | Extend class notation to include the collection of all arrows of a category. |
| class Arrow | ||
| Syntax | choma 17948 | Extend class notation to include the set of all arrows with a specific domain and codomain. |
| class Homa | ||
| Definition | df-doma 17949 | Definition of the domain extractor for an arrow. (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.) |
| ⊢ doma = (1st ∘ 1st ) | ||
| Definition | df-coda 17950 | Definition of the codomain extractor for an arrow. (Contributed by FL, 26-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.) |
| ⊢ coda = (2nd ∘ 1st ) | ||
| Definition | df-homa 17951* | Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma 17949 and df-coda 17950. (Contributed by FL, 6-May-2007.) (Revised by Mario Carneiro, 11-Jan-2017.) |
| ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) | ||
| Definition | df-arw 17952 | Definition of the set of arrows of a category. We will use the term "arrow" to denote a morphism tagged with its domain and codomain, as opposed to Hom, which allows hom-sets for distinct objects to overlap. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) | ||
| Theorem | homarcl 17953 | Reverse closure for an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) | ||
| Theorem | homafval 17954* | Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐽 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝐵 × 𝐵) ↦ ({𝑥} × (𝐽‘𝑥)))) | ||
| Theorem | homaf 17955 | Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐻:(𝐵 × 𝐵)⟶𝒫 ((𝐵 × 𝐵) × V)) | ||
| Theorem | homaval 17956 | Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐽 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) | ||
| Theorem | elhoma 17957 | Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐽 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) | ||
| Theorem | elhomai 17958 | Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐽 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) ⇒ ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) | ||
| Theorem | elhomai2 17959 | Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐽 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) ⇒ ⊢ (𝜑 → 〈𝑋, 𝑌, 𝐹〉 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | homarcl2 17960 | Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | homarel 17961 | An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ Rel (𝑋𝐻𝑌) | ||
| Theorem | homa1 17962 | The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) | ||
| Theorem | homahom2 17963 | The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐶) ⇒ ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝐹 ∈ (𝑋𝐽𝑌)) | ||
| Theorem | homahom 17964 | The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋𝐽𝑌)) | ||
| Theorem | homadm 17965 | The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) | ||
| Theorem | homacd 17966 | The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (coda‘𝐹) = 𝑌) | ||
| Theorem | homadmcd 17967 | Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) | ||
| Theorem | arwval 17968 | The set of arrows is the union of all the disjointified hom-sets. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ 𝐴 = ∪ ran 𝐻 | ||
| Theorem | arwrcl 17969 | The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐶 ∈ Cat) | ||
| Theorem | arwhoma 17970 | An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)𝐻(coda‘𝐹))) | ||
| Theorem | homarw 17971 | A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝑋𝐻𝑌) ⊆ 𝐴 | ||
| Theorem | arwdm 17972 | The domain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → (doma‘𝐹) ∈ 𝐵) | ||
| Theorem | arwcd 17973 | The codomain of an arrow is an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → (coda‘𝐹) ∈ 𝐵) | ||
| Theorem | dmaf 17974 | The domain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (doma ↾ 𝐴):𝐴⟶𝐵 | ||
| Theorem | cdaf 17975 | The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 | ||
| Theorem | arwhom 17976 | The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → (2nd ‘𝐹) ∈ ((doma‘𝐹)𝐽(coda‘𝐹))) | ||
| Theorem | arwdmcd 17977 | Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) | ||
| Syntax | cida 17978 | Extend class notation to include identity for arrows. |
| class Ida | ||
| Syntax | ccoa 17979 | Extend class notation to include composition for arrows. |
| class compa | ||
| Definition | df-ida 17980* | Definition of the identity arrow, which is just the identity morphism tagged with its domain and codomain. (Contributed by FL, 26-Oct-2007.) (Revised by Mario Carneiro, 11-Jan-2017.) |
| ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) | ||
| Definition | df-coa 17981* | Definition of the composition of arrows. Since arrows are tagged with domain and codomain, this does not need to be a quinary operation like the regular composition in a category comp. Instead, it is a partial binary operation on arrows, which is defined when the domain of the first arrow matches the codomain of the second. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) | ||
| Theorem | idafval 17982* | Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) | ||
| Theorem | idaval 17983 | Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) | ||
| Theorem | ida2 17984 | Morphism part of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (2nd ‘(𝐼‘𝑋)) = ( 1 ‘𝑋)) | ||
| Theorem | idahom 17985 | Domain and codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Homa‘𝐶) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝑋𝐻𝑋)) | ||
| Theorem | idadm 17986 | Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (doma‘(𝐼‘𝑋)) = 𝑋) | ||
| Theorem | idacd 17987 | Codomain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (coda‘(𝐼‘𝑋)) = 𝑋) | ||
| Theorem | idaf 17988 | The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐼 = (Ida‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ (𝜑 → 𝐼:𝐵⟶𝐴) | ||
| Theorem | coafval 17989* | The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐴 = (Arrow‘𝐶) & ⊢ ∙ = (comp‘𝐶) ⇒ ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉 ∙ (coda‘𝑔))(2nd ‘𝑓))〉) | ||
| Theorem | eldmcoa 17990 | A pair 〈𝐺, 𝐹〉 is in the domain of the arrow composition, if the domain of 𝐺 equals the codomain of 𝐹. (In this case we say 𝐺 and 𝐹 are composable.) (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ (𝐺dom · 𝐹 ↔ (𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ (coda‘𝐹) = (doma‘𝐺))) | ||
| Theorem | dmcoass 17991 | The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ dom · ⊆ (𝐴 × 𝐴) | ||
| Theorem | homdmcoa 17992 | If 𝐹:𝑋⟶𝑌 and 𝐺:𝑌⟶𝑍, then 𝐺 and 𝐹 are composable. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → 𝐺dom · 𝐹) | ||
| Theorem | coaval 17993 | Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ ∙ = (comp‘𝐶) ⇒ ⊢ (𝜑 → (𝐺 · 𝐹) = 〈𝑋, 𝑍, ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))〉) | ||
| Theorem | coa2 17994 | The morphism part of arrow composition. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ ∙ = (comp‘𝐶) ⇒ ⊢ (𝜑 → (2nd ‘(𝐺 · 𝐹)) = ((2nd ‘𝐺)(〈𝑋, 𝑌〉 ∙ 𝑍)(2nd ‘𝐹))) | ||
| Theorem | coahom 17995 | The composition of two composable arrows is an arrow. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐻 = (Homa‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) ⇒ ⊢ (𝜑 → (𝐺 · 𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | coapm 17996 | Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ · = (compa‘𝐶) & ⊢ 𝐴 = (Arrow‘𝐶) ⇒ ⊢ · ∈ (𝐴 ↑pm (𝐴 × 𝐴)) | ||
| Theorem | arwlid 17997 | Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ · = (compa‘𝐶) & ⊢ 1 = (Ida‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) | ||
| Theorem | arwrid 17998 | Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ · = (compa‘𝐶) & ⊢ 1 = (Ida‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) | ||
| Theorem | arwass 17999 | Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝐻 = (Homa‘𝐶) & ⊢ · = (compa‘𝐶) & ⊢ 1 = (Ida‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → ((𝐾 · 𝐺) · 𝐹) = (𝐾 · (𝐺 · 𝐹))) | ||
| Syntax | csetc 18000 | Extend class notation to include the category Set. |
| class SetCat | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |