HomeHome Metamath Proof Explorer
Theorem List (p. 180 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45328)
 

Theorem List for Metamath Proof Explorer - 17901-18000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsgrp0b 17901 The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
{⟨(Base‘ndx), ∅⟩, ⟨(+g‘ndx), 𝑂⟩} ∈ Smgrp
 
Theoremsgrp1 17902 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Smgrp)
 
10.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 17904, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 17906. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 17903 Extend class notation with class of all monoids.
class Mnd
 
Definitiondf-mnd 17904* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 17911), whose operation is associative (see mndass 17912) and has a two-sided neutral element (see mndid 17913), see also ismnd 17906. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
 
Theoremismnddef 17905* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremismnd 17906* The predicate "is a monoid". This is the definig theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 17911), whose operation is associative (so, a semigroup, see also mndass 17912) and has a two-sided neutral element (see mndid 17913). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremisnmnd 17907* A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (∀𝑧𝐵𝑥𝐵 (𝑧 𝑥) ≠ 𝑥𝑀 ∉ Mnd)
 
Theoremsgrpidmnd 17908* A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd 18094 and pwmndid 18093), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd)
 
Theoremmndsgrp 17909 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
 
Theoremmndmgm 17910 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
 
Theoremmndcl 17911 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndass 17912 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremmndid 17913* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmndideu 17914* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmnd32g 17915 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremmnd12g 17916 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremmnd4g 17917 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremmndidcl 17918 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Mnd → 0𝐵)
 
Theoremmndbn0 17919 The base set of a monoid is not empty. Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
 
Theoremhashfinmndnn 17920 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → (♯‘𝐵) ∈ ℕ)
 
Theoremmndplusf 17921 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremmndlrid 17922 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremmndlid 17923 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremmndrid 17924 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremismndd 17925* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑𝐺 ∈ Mnd)
 
Theoremmndpfo 17926 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndfo 17927 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndpropd 17928* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
 
Theoremmndprop 17929 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
 
Theoremissubmnd 17930* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 
Theoremress0g 17931 0g is unaffected by restriction. This is a bit more generic than submnd0 17932. (Contributed by Thierry Arnoux, 23-Oct-2017.)
𝑆 = (𝑅s 𝐴)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
 
Theoremsubmnd0 17932 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. See, for example, smndex1mnd 18067 and smndex1n0mnd 18069). (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
 
Theoremmndinvmod 17933* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
 
Theoremprdsplusgcl 17934 Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Mnd)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
 
Theoremprdsidlem 17935* Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &    + = (+g𝑌)    &   (𝜑𝑆𝑉)    &   (𝜑𝐼𝑊)    &   (𝜑𝑅:𝐼⟶Mnd)    &    0 = (0g𝑅)       (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
 
Theoremprdsmndd 17936 The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Mnd)       (𝜑𝑌 ∈ Mnd)
 
Theoremprds0g 17937 Zero in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
𝑌 = (𝑆Xs𝑅)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆𝑉)    &   (𝜑𝑅:𝐼⟶Mnd)       (𝜑 → (0g𝑅) = (0g𝑌))
 
Theorempwsmnd 17938 The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)       ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 ∈ Mnd)
 
Theorempws0g 17939 Zero in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
𝑌 = (𝑅s 𝐼)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → (𝐼 × { 0 }) = (0g𝑌))
 
Theoremimasmnd2 17940* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅𝑊)    &   ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)    &   ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))    &   (𝜑0𝑉)    &   ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))    &   ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))       (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasmnd 17941* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   (𝜑𝑅 ∈ Mnd)    &    0 = (0g𝑅)       (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
 
Theoremimasmndf1 17942 The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑈 ∈ Mnd)
 
Theoremxpsmnd 17943 The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015.)
𝑇 = (𝑅 ×s 𝑆)       ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd)
 
Theoremmnd1 17944 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mnd)
 
Theoremmnd1id 17945 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (0g𝑀) = 𝐼)
 
10.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 17946 Hom-set generator class for monoids.
class MndHom
 
Syntaxcsubmnd 17947 Class function taking a monoid to its lattice of submonoids.
class SubMnd
 
Definitiondf-mhm 17948* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
 
Definitiondf-submnd 17949* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
 
Theoremismhm 17950* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &    0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
 
Theoremmhmrcl1 17951 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
 
Theoremmhmrcl2 17952 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
 
Theoremmhmf 17953 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
 
Theoremmhmpropd 17954* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))       (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
 
Theoremmhmlin 17955 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
 
Theoremmhm0 17956 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
 
Theoremidmhm 17957 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
 
Theoremmhmf1o 17958 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
 
Theoremsubmrcl 17959 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
 
Theoremissubm 17960* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &    + = (+g𝑀)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
 
Theoremissubm2 17961 Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐻 = (𝑀s 𝑆)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
 
Theoremissubmndb 17962 The submonoid predicate. Analogous to issubg 18271. (Contributed by AV, 1-Feb-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝑆 ∈ (SubMnd‘𝐺) ↔ ((𝐺 ∈ Mnd ∧ (𝐺s 𝑆) ∈ Mnd) ∧ (𝑆𝐵0𝑆)))
 
Theoremissubmd 17963* Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &    0 = (0g𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝜒)    &   ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)    &   (𝑧 = 0 → (𝜓𝜒))    &   (𝑧 = 𝑥 → (𝜓𝜃))    &   (𝑧 = 𝑦 → (𝜓𝜏))    &   (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))       (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
 
Theoremmndissubm 17964 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 18291. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
 
Theoremresmndismnd 17965 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the other monoid restricted to the base set of the monoid is a monoid. Analogous to resgrpisgrp 18292. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝐺s 𝑆) ∈ Mnd))
 
Theoremsubmss 17966 Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)
 
Theoremsubmid 17967 Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀))
 
Theoremsubm0cl 17968 Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0𝑆)
 
Theoremsubmcl 17969 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
+ = (+g𝑀)       ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
 
Theoremsubmmnd 17970 Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 ∈ Mnd)
 
Theoremsubmbas 17971 The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻))
 
Theoremsubm0 17972 Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)    &    0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0 = (0g𝐻))
 
Theoremsubsubm 17973 A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
 
Theorem0subm 17974 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
0 = (0g𝐺)       (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
 
Theoreminsubm 17975 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀))
 
Theorem0mhm 17976 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
0 = (0g𝑁)    &   𝐵 = (Base‘𝑀)       ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
 
Theoremresmhm 17977 Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
𝑈 = (𝑆s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
 
Theoremresmhm2 17978 One direction of resmhm2b 17979. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremresmhm2b 17979 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
 
Theoremmhmco 17980 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
 
Theoremmhmima 17981 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))
 
Theoremmhmeql 17982 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
 
Theoremsubmacs 17983 Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
 
Theoremmndind 17984* Induction in a monoid. In this theorem, 𝜓(𝑥) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in 𝐺). The hypothesis mndind.k tells that 𝐺 is generating. (Contributed by SO, 14-Jul-2018.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = (𝑦 + 𝑧) → (𝜓𝜃))    &   (𝑥 = 0 → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &    0 = (0g𝑀)    &    + = (+g𝑀)    &   𝐵 = (Base‘𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐺𝐵)    &   (𝜑𝐵 = ((mrCls‘(SubMnd‘𝑀))‘𝐺))    &   (𝜑𝜏)    &   (((𝜑𝑦𝐵𝑧𝐺) ∧ 𝜒) → 𝜃)    &   (𝜑𝐴𝐵)       (𝜑𝜂)
 
Theoremprdspjmhm 17985* A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
𝑌 = (𝑆Xs𝑅)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆𝑋)    &   (𝜑𝑅:𝐼⟶Mnd)    &   (𝜑𝐴𝐼)       (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
 
Theorempwspjmhm 17986* A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)       ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
 
Theorempwsdiagmhm 17987* Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))       ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
 
Theorempwsco1mhm 17988* Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑌 = (𝑅s 𝐴)    &   𝑍 = (𝑅s 𝐵)    &   𝐶 = (Base‘𝑍)    &   (𝜑𝑅 ∈ Mnd)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
 
Theorempwsco2mhm 17989* Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑌 = (𝑅s 𝐴)    &   𝑍 = (𝑆s 𝐴)    &   𝐵 = (Base‘𝑌)    &   (𝜑𝐴𝑉)    &   (𝜑𝐹 ∈ (𝑅 MndHom 𝑆))       (𝜑 → (𝑔𝐵 ↦ (𝐹𝑔)) ∈ (𝑌 MndHom 𝑍))
 
10.1.7  Iterated sums in a monoid

One important use of words is as formal composites in cases where order is significant, using the general sum operator df-gsum 16708. If order is not significant, it is simpler to use families instead.

 
Theoremgsumvallem2 17990* Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺 ∈ Mnd → 𝑂 = { 0 })
 
Theoremgsumsubm 17991 Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐹:𝐴𝑆)    &   𝐻 = (𝐺s 𝑆)       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumz 17992* Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.)
0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
 
Theoremgsumwsubmcl 17993 Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
 
Theoremgsumws1 17994 A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.)
𝐵 = (Base‘𝐺)       (𝑆𝐵 → (𝐺 Σg ⟨“𝑆”⟩) = 𝑆)
 
Theoremgsumwcl 17995 Closure of the composite of a word in a structure 𝐺. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵)
 
Theoremgsumsgrpccat 17996 Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat 17998. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
TheoremgsumccatOLD 17997 Obsolete version of gsumccat 17998 as of 13-Jan-2024. Homomorphic property of composites. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
Theoremgsumccat 17998 Homomorphic property of composites. Second formula in [Lang] p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋)))
 
Theoremgsumws2 17999 Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵𝑇𝐵) → (𝐺 Σg ⟨“𝑆𝑇”⟩) = (𝑆 + 𝑇))
 
Theoremgsumccatsn 18000 Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑍𝐵) → (𝐺 Σg (𝑊 ++ ⟨“𝑍”⟩)) = ((𝐺 Σg 𝑊) + 𝑍))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45328
  Copyright terms: Public domain < Previous  Next >