MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucval Structured version   Visualization version   GIF version

Theorem fucval 17886
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q 𝑄 = (𝐶 FuncCat 𝐷)
fucval.b 𝐵 = (𝐶 Func 𝐷)
fucval.n 𝑁 = (𝐶 Nat 𝐷)
fucval.a 𝐴 = (Base‘𝐶)
fucval.o · = (comp‘𝐷)
fucval.c (𝜑𝐶 ∈ Cat)
fucval.d (𝜑𝐷 ∈ Cat)
fucval.x (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
Assertion
Ref Expression
fucval (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Distinct variable groups:   𝑣,,𝐵   𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥,𝜑   𝐶,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝐵(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑄(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   · (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝑁(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)

Proof of Theorem fucval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucval.q . 2 𝑄 = (𝐶 FuncCat 𝐷)
2 df-fuc 17872 . . . 4 FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩})
32a1i 11 . . 3 (𝜑 → FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩}))
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑡 = 𝐶)
5 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑢 = 𝐷)
64, 5oveq12d 7371 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
7 fucval.b . . . . . 6 𝐵 = (𝐶 Func 𝐷)
86, 7eqtr4di 2782 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = 𝐵)
98opeq2d 4834 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Base‘ndx), (𝑡 Func 𝑢)⟩ = ⟨(Base‘ndx), 𝐵⟩)
104, 5oveq12d 7371 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = (𝐶 Nat 𝐷))
11 fucval.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
1210, 11eqtr4di 2782 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = 𝑁)
1312opeq2d 4834 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩ = ⟨(Hom ‘ndx), 𝑁⟩)
148sqxpeqd 5655 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)) = (𝐵 × 𝐵))
1512oveqd 7370 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑔(𝑡 Nat 𝑢)) = (𝑔𝑁))
1612oveqd 7370 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑓(𝑡 Nat 𝑢)𝑔) = (𝑓𝑁𝑔))
174fveq2d 6830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = (Base‘𝐶))
18 fucval.a . . . . . . . . . . . 12 𝐴 = (Base‘𝐶)
1917, 18eqtr4di 2782 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = 𝐴)
205fveq2d 6830 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = (comp‘𝐷))
21 fucval.o . . . . . . . . . . . . . 14 · = (comp‘𝐷)
2220, 21eqtr4di 2782 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = · )
2322oveqd 7370 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥)) = (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥)))
2423oveqd 7370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))
2519, 24mpteq12dv 5182 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))
2615, 16, 25mpoeq123dv 7428 . . . . . . . . 9 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2726csbeq2dv 3860 . . . . . . . 8 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2827csbeq2dv 3860 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2914, 8, 28mpoeq123dv 7428 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
30 fucval.x . . . . . . 7 (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3229, 31eqtr4d 2767 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = )
3332opeq2d 4834 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), ⟩)
349, 13, 33tpeq123d 4702 . . 3 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
35 fucval.c . . 3 (𝜑𝐶 ∈ Cat)
36 fucval.d . . 3 (𝜑𝐷 ∈ Cat)
37 tpex 7686 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V
3837a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V)
393, 34, 35, 36, 38ovmpod 7505 . 2 (𝜑 → (𝐶 FuncCat 𝐷) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
401, 39eqtrid 2776 1 (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  {ctp 4583  cop 4585  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  ndxcnx 17122  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588   Func cfunc 17779   Nat cnat 17869   FuncCat cfuc 17870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fuc 17872
This theorem is referenced by:  fuccofval  17887  fucbas  17888  fuchom  17889  fucpropd  17905  catcfuccl  18043
  Copyright terms: Public domain W3C validator