Step | Hyp | Ref
| Expression |
1 | | fucval.q |
. 2
β’ π = (πΆ FuncCat π·) |
2 | | df-fuc 17791 |
. . . 4
β’ FuncCat
= (π‘ β Cat, π’ β Cat β¦
{β¨(Baseβndx), (π‘
Func π’)β©, β¨(Hom
βndx), (π‘ Nat π’)β©, β¨(compβndx),
(π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β©}) |
3 | 2 | a1i 11 |
. . 3
β’ (π β FuncCat = (π‘ β Cat, π’ β Cat β¦ {β¨(Baseβndx),
(π‘ Func π’)β©, β¨(Hom βndx), (π‘ Nat π’)β©, β¨(compβndx), (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β©})) |
4 | | simprl 769 |
. . . . . . 7
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β π‘ = πΆ) |
5 | | simprr 771 |
. . . . . . 7
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β π’ = π·) |
6 | 4, 5 | oveq12d 7369 |
. . . . . 6
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π‘ Func π’) = (πΆ Func π·)) |
7 | | fucval.b |
. . . . . 6
β’ π΅ = (πΆ Func π·) |
8 | 6, 7 | eqtr4di 2795 |
. . . . 5
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π‘ Func π’) = π΅) |
9 | 8 | opeq2d 4835 |
. . . 4
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β¨(Baseβndx), (π‘ Func π’)β© = β¨(Baseβndx), π΅β©) |
10 | 4, 5 | oveq12d 7369 |
. . . . . 6
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π‘ Nat π’) = (πΆ Nat π·)) |
11 | | fucval.n |
. . . . . 6
β’ π = (πΆ Nat π·) |
12 | 10, 11 | eqtr4di 2795 |
. . . . 5
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π‘ Nat π’) = π) |
13 | 12 | opeq2d 4835 |
. . . 4
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β¨(Hom βndx), (π‘ Nat π’)β© = β¨(Hom βndx), πβ©) |
14 | 8 | sqxpeqd 5663 |
. . . . . . 7
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β ((π‘ Func π’) Γ (π‘ Func π’)) = (π΅ Γ π΅)) |
15 | 12 | oveqd 7368 |
. . . . . . . . . 10
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π(π‘ Nat π’)β) = (ππβ)) |
16 | 12 | oveqd 7368 |
. . . . . . . . . 10
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π(π‘ Nat π’)π) = (πππ)) |
17 | 4 | fveq2d 6843 |
. . . . . . . . . . . 12
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (Baseβπ‘) = (BaseβπΆ)) |
18 | | fucval.a |
. . . . . . . . . . . 12
β’ π΄ = (BaseβπΆ) |
19 | 17, 18 | eqtr4di 2795 |
. . . . . . . . . . 11
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (Baseβπ‘) = π΄) |
20 | 5 | fveq2d 6843 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (compβπ’) = (compβπ·)) |
21 | | fucval.o |
. . . . . . . . . . . . . 14
β’ Β· =
(compβπ·) |
22 | 20, 21 | eqtr4di 2795 |
. . . . . . . . . . . . 13
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (compβπ’) = Β· ) |
23 | 22 | oveqd 7368 |
. . . . . . . . . . . 12
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (β¨((1st
βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯)) = (β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))) |
24 | 23 | oveqd 7368 |
. . . . . . . . . . 11
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)) = ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯))) |
25 | 19, 24 | mpteq12dv 5194 |
. . . . . . . . . 10
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯))) = (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯)))) |
26 | 15, 16, 25 | mpoeq123dv 7426 |
. . . . . . . . 9
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))) = (π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯))))) |
27 | 26 | csbeq2dv 3860 |
. . . . . . . 8
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))) = β¦(2nd
βπ£) / πβ¦(π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯))))) |
28 | 27 | csbeq2dv 3860 |
. . . . . . 7
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))) = β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯))))) |
29 | 14, 8, 28 | mpoeq123dv 7426 |
. . . . . 6
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯))))) = (π£ β (π΅ Γ π΅), β β π΅ β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯)))))) |
30 | | fucval.x |
. . . . . . 7
β’ (π β β = (π£ β (π΅ Γ π΅), β β π΅ β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯)))))) |
31 | 30 | adantr 481 |
. . . . . 6
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β = (π£ β (π΅ Γ π΅), β β π΅ β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (ππβ), π β (πππ) β¦ (π₯ β π΄ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β© Β· ((1st
ββ)βπ₯))(πβπ₯)))))) |
32 | 29, 31 | eqtr4d 2780 |
. . . . 5
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯))))) = β ) |
33 | 32 | opeq2d 4835 |
. . . 4
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β β¨(compβndx), (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β© = β¨(compβndx), β
β©) |
34 | 9, 13, 33 | tpeq123d 4707 |
. . 3
β’ ((π β§ (π‘ = πΆ β§ π’ = π·)) β {β¨(Baseβndx), (π‘ Func π’)β©, β¨(Hom βndx), (π‘ Nat π’)β©, β¨(compβndx), (π£ β ((π‘ Func π’) Γ (π‘ Func π’)), β β (π‘ Func π’) β¦ β¦(1st
βπ£) / πβ¦β¦(2nd
βπ£) / πβ¦(π β (π(π‘ Nat π’)β), π β (π(π‘ Nat π’)π) β¦ (π₯ β (Baseβπ‘) β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((1st βπ)βπ₯)β©(compβπ’)((1st ββ)βπ₯))(πβπ₯)))))β©} = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
πβ©,
β¨(compβndx), β
β©}) |
35 | | fucval.c |
. . 3
β’ (π β πΆ β Cat) |
36 | | fucval.d |
. . 3
β’ (π β π· β Cat) |
37 | | tpex 7673 |
. . . 4
β’
{β¨(Baseβndx), π΅β©, β¨(Hom βndx), πβ©, β¨(compβndx),
β
β©} β V |
38 | 37 | a1i 11 |
. . 3
β’ (π β {β¨(Baseβndx),
π΅β©, β¨(Hom
βndx), πβ©,
β¨(compβndx), β β©} β
V) |
39 | 3, 34, 35, 36, 38 | ovmpod 7501 |
. 2
β’ (π β (πΆ FuncCat π·) = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
πβ©,
β¨(compβndx), β
β©}) |
40 | 1, 39 | eqtrid 2789 |
1
β’ (π β π = {β¨(Baseβndx), π΅β©, β¨(Hom βndx),
πβ©,
β¨(compβndx), β
β©}) |