MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucval Structured version   Visualization version   GIF version

Theorem fucval 17806
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q 𝑄 = (𝐢 FuncCat 𝐷)
fucval.b 𝐡 = (𝐢 Func 𝐷)
fucval.n 𝑁 = (𝐢 Nat 𝐷)
fucval.a 𝐴 = (Baseβ€˜πΆ)
fucval.o Β· = (compβ€˜π·)
fucval.c (πœ‘ β†’ 𝐢 ∈ Cat)
fucval.d (πœ‘ β†’ 𝐷 ∈ Cat)
fucval.x (πœ‘ β†’ βˆ™ = (𝑣 ∈ (𝐡 Γ— 𝐡), β„Ž ∈ 𝐡 ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
Assertion
Ref Expression
fucval (πœ‘ β†’ 𝑄 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩})
Distinct variable groups:   𝑣,β„Ž,𝐡   π‘Ž,𝑏,𝑓,𝑔,β„Ž,𝑣,π‘₯,πœ‘   𝐢,π‘Ž,𝑏,𝑓,𝑔,β„Ž,𝑣,π‘₯   𝐷,π‘Ž,𝑏,𝑓,𝑔,β„Ž,𝑣,π‘₯
Allowed substitution hints:   𝐴(π‘₯,𝑣,𝑓,𝑔,β„Ž,π‘Ž,𝑏)   𝐡(π‘₯,𝑓,𝑔,π‘Ž,𝑏)   𝑄(π‘₯,𝑣,𝑓,𝑔,β„Ž,π‘Ž,𝑏)   βˆ™ (π‘₯,𝑣,𝑓,𝑔,β„Ž,π‘Ž,𝑏)   Β· (π‘₯,𝑣,𝑓,𝑔,β„Ž,π‘Ž,𝑏)   𝑁(π‘₯,𝑣,𝑓,𝑔,β„Ž,π‘Ž,𝑏)

Proof of Theorem fucval
Dummy variables 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucval.q . 2 𝑄 = (𝐢 FuncCat 𝐷)
2 df-fuc 17791 . . . 4 FuncCat = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
32a1i 11 . . 3 (πœ‘ β†’ FuncCat = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩}))
4 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ 𝑑 = 𝐢)
5 simprr 771 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ 𝑒 = 𝐷)
64, 5oveq12d 7369 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑑 Func 𝑒) = (𝐢 Func 𝐷))
7 fucval.b . . . . . 6 𝐡 = (𝐢 Func 𝐷)
86, 7eqtr4di 2795 . . . . 5 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑑 Func 𝑒) = 𝐡)
98opeq2d 4835 . . . 4 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩ = ⟨(Baseβ€˜ndx), 𝐡⟩)
104, 5oveq12d 7369 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑑 Nat 𝑒) = (𝐢 Nat 𝐷))
11 fucval.n . . . . . 6 𝑁 = (𝐢 Nat 𝐷)
1210, 11eqtr4di 2795 . . . . 5 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑑 Nat 𝑒) = 𝑁)
1312opeq2d 4835 . . . 4 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩ = ⟨(Hom β€˜ndx), π‘βŸ©)
148sqxpeqd 5663 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)) = (𝐡 Γ— 𝐡))
1512oveqd 7368 . . . . . . . . . 10 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑔(𝑑 Nat 𝑒)β„Ž) = (π‘”π‘β„Ž))
1612oveqd 7368 . . . . . . . . . 10 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑓(𝑑 Nat 𝑒)𝑔) = (𝑓𝑁𝑔))
174fveq2d 6843 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (Baseβ€˜π‘‘) = (Baseβ€˜πΆ))
18 fucval.a . . . . . . . . . . . 12 𝐴 = (Baseβ€˜πΆ)
1917, 18eqtr4di 2795 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (Baseβ€˜π‘‘) = 𝐴)
205fveq2d 6843 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (compβ€˜π‘’) = (compβ€˜π·))
21 fucval.o . . . . . . . . . . . . . 14 Β· = (compβ€˜π·)
2220, 21eqtr4di 2795 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (compβ€˜π‘’) = Β· )
2322oveqd 7368 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯)) = (⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯)))
2423oveqd 7368 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) = ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))
2519, 24mpteq12dv 5194 . . . . . . . . . 10 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) = (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))
2615, 16, 25mpoeq123dv 7426 . . . . . . . . 9 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = (𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
2726csbeq2dv 3860 . . . . . . . 8 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
2827csbeq2dv 3860 . . . . . . 7 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
2914, 8, 28mpoeq123dv 7426 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ (𝐡 Γ— 𝐡), β„Ž ∈ 𝐡 ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
30 fucval.x . . . . . . 7 (πœ‘ β†’ βˆ™ = (𝑣 ∈ (𝐡 Γ— 𝐡), β„Ž ∈ 𝐡 ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
3130adantr 481 . . . . . 6 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ βˆ™ = (𝑣 ∈ (𝐡 Γ— 𝐡), β„Ž ∈ 𝐡 ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (π‘”π‘β„Ž), π‘Ž ∈ (𝑓𝑁𝑔) ↦ (π‘₯ ∈ 𝐴 ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩ Β· ((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
3229, 31eqtr4d 2780 . . . . 5 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = βˆ™ )
3332opeq2d 4835 . . . 4 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩ = ⟨(compβ€˜ndx), βˆ™ ⟩)
349, 13, 33tpeq123d 4707 . . 3 ((πœ‘ ∧ (𝑑 = 𝐢 ∧ 𝑒 = 𝐷)) β†’ {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩})
35 fucval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
36 fucval.d . . 3 (πœ‘ β†’ 𝐷 ∈ Cat)
37 tpex 7673 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩} ∈ V
3837a1i 11 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩} ∈ V)
393, 34, 35, 36, 38ovmpod 7501 . 2 (πœ‘ β†’ (𝐢 FuncCat 𝐷) = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩})
401, 39eqtrid 2789 1 (πœ‘ β†’ 𝑄 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(Hom β€˜ndx), π‘βŸ©, ⟨(compβ€˜ndx), βˆ™ ⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3443  β¦‹csb 3853  {ctp 4588  βŸ¨cop 4590   ↦ cmpt 5186   Γ— cxp 5629  β€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353  1st c1st 7911  2nd c2nd 7912  ndxcnx 17025  Basecbs 17043  Hom chom 17104  compcco 17105  Catccat 17504   Func cfunc 17700   Nat cnat 17788   FuncCat cfuc 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6445  df-fun 6495  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-fuc 17791
This theorem is referenced by:  fuccofval  17807  fucbas  17808  fuchom  17809  fuchomOLD  17810  fucpropd  17826  catcfuccl  17965  catcfucclOLD  17966
  Copyright terms: Public domain W3C validator