MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucval Structured version   Visualization version   GIF version

Theorem fucval 17974
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q 𝑄 = (𝐶 FuncCat 𝐷)
fucval.b 𝐵 = (𝐶 Func 𝐷)
fucval.n 𝑁 = (𝐶 Nat 𝐷)
fucval.a 𝐴 = (Base‘𝐶)
fucval.o · = (comp‘𝐷)
fucval.c (𝜑𝐶 ∈ Cat)
fucval.d (𝜑𝐷 ∈ Cat)
fucval.x (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
Assertion
Ref Expression
fucval (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Distinct variable groups:   𝑣,,𝐵   𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥,𝜑   𝐶,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝐵(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑄(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   · (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝑁(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)

Proof of Theorem fucval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucval.q . 2 𝑄 = (𝐶 FuncCat 𝐷)
2 df-fuc 17960 . . . 4 FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩})
32a1i 11 . . 3 (𝜑 → FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩}))
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑡 = 𝐶)
5 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑢 = 𝐷)
64, 5oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
7 fucval.b . . . . . 6 𝐵 = (𝐶 Func 𝐷)
86, 7eqtr4di 2788 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = 𝐵)
98opeq2d 4856 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Base‘ndx), (𝑡 Func 𝑢)⟩ = ⟨(Base‘ndx), 𝐵⟩)
104, 5oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = (𝐶 Nat 𝐷))
11 fucval.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
1210, 11eqtr4di 2788 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = 𝑁)
1312opeq2d 4856 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩ = ⟨(Hom ‘ndx), 𝑁⟩)
148sqxpeqd 5686 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)) = (𝐵 × 𝐵))
1512oveqd 7422 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑔(𝑡 Nat 𝑢)) = (𝑔𝑁))
1612oveqd 7422 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑓(𝑡 Nat 𝑢)𝑔) = (𝑓𝑁𝑔))
174fveq2d 6880 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = (Base‘𝐶))
18 fucval.a . . . . . . . . . . . 12 𝐴 = (Base‘𝐶)
1917, 18eqtr4di 2788 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = 𝐴)
205fveq2d 6880 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = (comp‘𝐷))
21 fucval.o . . . . . . . . . . . . . 14 · = (comp‘𝐷)
2220, 21eqtr4di 2788 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = · )
2322oveqd 7422 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥)) = (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥)))
2423oveqd 7422 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))
2519, 24mpteq12dv 5207 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))
2615, 16, 25mpoeq123dv 7482 . . . . . . . . 9 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2726csbeq2dv 3881 . . . . . . . 8 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2827csbeq2dv 3881 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2914, 8, 28mpoeq123dv 7482 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
30 fucval.x . . . . . . 7 (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3229, 31eqtr4d 2773 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = )
3332opeq2d 4856 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), ⟩)
349, 13, 33tpeq123d 4724 . . 3 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
35 fucval.c . . 3 (𝜑𝐶 ∈ Cat)
36 fucval.d . . 3 (𝜑𝐷 ∈ Cat)
37 tpex 7740 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V
3837a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V)
393, 34, 35, 36, 38ovmpod 7559 . 2 (𝜑 → (𝐶 FuncCat 𝐷) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
401, 39eqtrid 2782 1 (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  {ctp 4605  cop 4607  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  ndxcnx 17212  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676   Func cfunc 17867   Nat cnat 17957   FuncCat cfuc 17958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fuc 17960
This theorem is referenced by:  fuccofval  17975  fucbas  17976  fuchom  17977  fucpropd  17993  catcfuccl  18131
  Copyright terms: Public domain W3C validator