MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucval Structured version   Visualization version   GIF version

Theorem fucval 17870
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fucval.q 𝑄 = (𝐶 FuncCat 𝐷)
fucval.b 𝐵 = (𝐶 Func 𝐷)
fucval.n 𝑁 = (𝐶 Nat 𝐷)
fucval.a 𝐴 = (Base‘𝐶)
fucval.o · = (comp‘𝐷)
fucval.c (𝜑𝐶 ∈ Cat)
fucval.d (𝜑𝐷 ∈ Cat)
fucval.x (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
Assertion
Ref Expression
fucval (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Distinct variable groups:   𝑣,,𝐵   𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥,𝜑   𝐶,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥   𝐷,𝑎,𝑏,𝑓,𝑔,,𝑣,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝐵(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑄(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   · (𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)   𝑁(𝑥,𝑣,𝑓,𝑔,,𝑎,𝑏)

Proof of Theorem fucval
Dummy variables 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucval.q . 2 𝑄 = (𝐶 FuncCat 𝐷)
2 df-fuc 17856 . . . 4 FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩})
32a1i 11 . . 3 (𝜑 → FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩}))
4 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑡 = 𝐶)
5 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → 𝑢 = 𝐷)
64, 5oveq12d 7370 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = (𝐶 Func 𝐷))
7 fucval.b . . . . . 6 𝐵 = (𝐶 Func 𝐷)
86, 7eqtr4di 2786 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Func 𝑢) = 𝐵)
98opeq2d 4831 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Base‘ndx), (𝑡 Func 𝑢)⟩ = ⟨(Base‘ndx), 𝐵⟩)
104, 5oveq12d 7370 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = (𝐶 Nat 𝐷))
11 fucval.n . . . . . 6 𝑁 = (𝐶 Nat 𝐷)
1210, 11eqtr4di 2786 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑡 Nat 𝑢) = 𝑁)
1312opeq2d 4831 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩ = ⟨(Hom ‘ndx), 𝑁⟩)
148sqxpeqd 5651 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)) = (𝐵 × 𝐵))
1512oveqd 7369 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑔(𝑡 Nat 𝑢)) = (𝑔𝑁))
1612oveqd 7369 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑓(𝑡 Nat 𝑢)𝑔) = (𝑓𝑁𝑔))
174fveq2d 6832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = (Base‘𝐶))
18 fucval.a . . . . . . . . . . . 12 𝐴 = (Base‘𝐶)
1917, 18eqtr4di 2786 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (Base‘𝑡) = 𝐴)
205fveq2d 6832 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = (comp‘𝐷))
21 fucval.o . . . . . . . . . . . . . 14 · = (comp‘𝐷)
2220, 21eqtr4di 2786 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (comp‘𝑢) = · )
2322oveqd 7369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥)) = (⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥)))
2423oveqd 7369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))
2519, 24mpteq12dv 5180 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))) = (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))
2615, 16, 25mpoeq123dv 7427 . . . . . . . . 9 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2726csbeq2dv 3853 . . . . . . . 8 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2827csbeq2dv 3853 . . . . . . 7 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥)))))
2914, 8, 28mpoeq123dv 7427 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
30 fucval.x . . . . . . 7 (𝜑 = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3130adantr 480 . . . . . 6 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → = (𝑣 ∈ (𝐵 × 𝐵), 𝐵(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔𝑁), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥𝐴 ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ · ((1st)‘𝑥))(𝑎𝑥))))))
3229, 31eqtr4d 2771 . . . . 5 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥))))) = )
3332opeq2d 4831 . . . 4 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), ⟩)
349, 13, 33tpeq123d 4700 . . 3 ((𝜑 ∧ (𝑡 = 𝐶𝑢 = 𝐷)) → {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
35 fucval.c . . 3 (𝜑𝐶 ∈ Cat)
36 fucval.d . . 3 (𝜑𝐷 ∈ Cat)
37 tpex 7685 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V
3837a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩} ∈ V)
393, 34, 35, 36, 38ovmpod 7504 . 2 (𝜑 → (𝐶 FuncCat 𝐷) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
401, 39eqtrid 2780 1 (𝜑𝑄 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝑁⟩, ⟨(comp‘ndx), ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  {ctp 4579  cop 4581  cmpt 5174   × cxp 5617  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  ndxcnx 17106  Basecbs 17122  Hom chom 17174  compcco 17175  Catccat 17572   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-fuc 17856
This theorem is referenced by:  fuccofval  17871  fucbas  17872  fuchom  17873  fucpropd  17889  catcfuccl  18027
  Copyright terms: Public domain W3C validator