MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfuc Structured version   Visualization version   GIF version

Theorem fnfuc 17895
Description: The FuncCat operation is a well-defined function on categories. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
fnfuc FuncCat Fn (Cat Γ— Cat)

Proof of Theorem fnfuc
Dummy variables π‘Ž 𝑏 𝑓 𝑔 β„Ž 𝑑 𝑒 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fuc 17894 . 2 FuncCat = (𝑑 ∈ Cat, 𝑒 ∈ Cat ↦ {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
2 tpex 7733 . 2 {⟨(Baseβ€˜ndx), (𝑑 Func 𝑒)⟩, ⟨(Hom β€˜ndx), (𝑑 Nat 𝑒)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝑑 Func 𝑒) Γ— (𝑑 Func 𝑒)), β„Ž ∈ (𝑑 Func 𝑒) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝑑 Nat 𝑒)β„Ž), π‘Ž ∈ (𝑓(𝑑 Nat 𝑒)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π‘‘) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π‘’)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩} ∈ V
31, 2fnmpoi 8055 1 FuncCat Fn (Cat Γ— Cat)
Colors of variables: wff setvar class
Syntax hints:  β¦‹csb 3893  {ctp 4632  βŸ¨cop 4634   ↦ cmpt 5231   Γ— cxp 5674   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  1st c1st 7972  2nd c2nd 7973  ndxcnx 17125  Basecbs 17143  Hom chom 17207  compcco 17208  Catccat 17607   Func cfunc 17803   Nat cnat 17891   FuncCat cfuc 17892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-fuc 17894
This theorem is referenced by:  fucbas  17911  fuchom  17912  fuchomOLD  17913
  Copyright terms: Public domain W3C validator