Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-gam | Structured version Visualization version GIF version |
Description: Define the Gamma function. See df-lgam 26168 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
Ref | Expression |
---|---|
df-gam | ⊢ Γ = (exp ∘ log Γ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgam 26166 | . 2 class Γ | |
2 | ce 15771 | . . 3 class exp | |
3 | clgam 26165 | . . 3 class log Γ | |
4 | 2, 3 | ccom 5593 | . 2 class (exp ∘ log Γ) |
5 | 1, 4 | wceq 1539 | 1 wff Γ = (exp ∘ log Γ) |
Colors of variables: wff setvar class |
This definition is referenced by: gamf 26192 eflgam 26194 |
Copyright terms: Public domain | W3C validator |