| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-gam | Structured version Visualization version GIF version | ||
| Description: Define the Gamma function. See df-lgam 27062 for more information about the reason for this definition in terms of the log-gamma function. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-gam | ⊢ Γ = (exp ∘ log Γ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgam 27060 | . 2 class Γ | |
| 2 | ce 16097 | . . 3 class exp | |
| 3 | clgam 27059 | . . 3 class log Γ | |
| 4 | 2, 3 | ccom 5689 | . 2 class (exp ∘ log Γ) |
| 5 | 1, 4 | wceq 1540 | 1 wff Γ = (exp ∘ log Γ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: gamf 27086 eflgam 27088 |
| Copyright terms: Public domain | W3C validator |