Detailed syntax breakdown of Definition df-igam
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cigam 27062 | . 2
class
1/Γ | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | cc 11154 | . . 3
class
ℂ | 
| 4 | 2 | cv 1538 | . . . . 5
class 𝑥 | 
| 5 |  | cz 12615 | . . . . . 6
class
ℤ | 
| 6 |  | cn 12267 | . . . . . 6
class
ℕ | 
| 7 | 5, 6 | cdif 3947 | . . . . 5
class (ℤ
∖ ℕ) | 
| 8 | 4, 7 | wcel 2107 | . . . 4
wff 𝑥 ∈ (ℤ ∖
ℕ) | 
| 9 |  | cc0 11156 | . . . 4
class
0 | 
| 10 |  | c1 11157 | . . . . 5
class
1 | 
| 11 |  | cgam 27061 | . . . . . 6
class
Γ | 
| 12 | 4, 11 | cfv 6560 | . . . . 5
class
(Γ‘𝑥) | 
| 13 |  | cdiv 11921 | . . . . 5
class 
/ | 
| 14 | 10, 12, 13 | co 7432 | . . . 4
class (1 /
(Γ‘𝑥)) | 
| 15 | 8, 9, 14 | cif 4524 | . . 3
class if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥))) | 
| 16 | 2, 3, 15 | cmpt 5224 | . 2
class (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥)))) | 
| 17 | 1, 16 | wceq 1539 | 1
wff 1/Γ =
(𝑥 ∈ ℂ ↦
if(𝑥 ∈ (ℤ
∖ ℕ), 0, (1 / (Γ‘𝑥)))) |