Detailed syntax breakdown of Definition df-igam
Step | Hyp | Ref
| Expression |
1 | | cigam 26148 |
. 2
class
1/Γ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cc 10853 |
. . 3
class
ℂ |
4 | 2 | cv 1540 |
. . . . 5
class 𝑥 |
5 | | cz 12302 |
. . . . . 6
class
ℤ |
6 | | cn 11956 |
. . . . . 6
class
ℕ |
7 | 5, 6 | cdif 3888 |
. . . . 5
class (ℤ
∖ ℕ) |
8 | 4, 7 | wcel 2109 |
. . . 4
wff 𝑥 ∈ (ℤ ∖
ℕ) |
9 | | cc0 10855 |
. . . 4
class
0 |
10 | | c1 10856 |
. . . . 5
class
1 |
11 | | cgam 26147 |
. . . . . 6
class
Γ |
12 | 4, 11 | cfv 6430 |
. . . . 5
class
(Γ‘𝑥) |
13 | | cdiv 11615 |
. . . . 5
class
/ |
14 | 10, 12, 13 | co 7268 |
. . . 4
class (1 /
(Γ‘𝑥)) |
15 | 8, 9, 14 | cif 4464 |
. . 3
class if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥))) |
16 | 2, 3, 15 | cmpt 5161 |
. 2
class (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥)))) |
17 | 1, 16 | wceq 1541 |
1
wff 1/Γ =
(𝑥 ∈ ℂ ↦
if(𝑥 ∈ (ℤ
∖ ℕ), 0, (1 / (Γ‘𝑥)))) |